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Abstract: The method for solving viscous incompressible flows, based on Glowinski, Pan,Hesla & 
Joseph (1998), is presented for the direct numerical simulation of viscous incompressible flow.It uses a 
finite element discretization in space and an operator-splitting technique for discretization in time. 
Quadratic approximation is employed for velocity flow and linear approximation for pressure on triangle 
elements. The goal is to develop more efficient and accurate numerical tool for computing viscous flows. 
The accuracy of the presented method has been confirmed on two common cases by implementation in 
Matlab program: the Poiseuille flow test, and on driven cavity flow test. 
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1. Introduction 

The aim of t his article is to present a method for solving viscous incompressible flows. The finite 
element implementation is based on the incompressible Navier-Stokes equations on structured two 
dimensional triangular meshes using operator splitting for time discretization (Glowinski 2003). The 
fractional-time-step scheme described by Marchuk (1990) has been employed. Liquid is supposed to 
be incompressible and Newtonian. The advantage of this method is that no r epeated remeshing is 
required. Also the assembled mass matrix remains constant and so it does not have to be assembled at 
every time step. By splitting one time step into three successive substeps the discretization enables 
better approximation of results. Pressure is computed in this case in the first sub-step while velocity is 
computed at each substep. To discretize the domain the Taylor-Hood triangular elements have bed 
used with second degree polynomic approximation of velocity and first degree polynomic 
approximation of pressure. 

2.  Problem formulation 

2.1. The governing equations 

Assume incompressible viscous Newtonian fluid occupying at the given time 𝑡 ∈ (0,𝑇), delimited 
domain Ω ⊂ 𝐑2 with boundary Γ. Let denote by 𝑥 = {𝑥𝑖}𝑖=12  a generic point in Ω. Let further denote 
by 𝑢(𝑥, 𝑡) velocity and by 𝑝(𝑥, 𝑡) pressure, both governed by Navier-Stokes equations: 

  𝜌 d𝐮
d𝑡

= 𝜌𝐠 + ∇.𝛔 on Ω  - momentum equation,  (1) 

 ∇.𝒖 = 0 on Ω. – incompressibility condition,  (2) 

where 𝜌 is density of the fluid, 𝐮 is velocity of the fluid, and 𝛔 is fluid stress. For an incompressible 
Newtonian viscous fluid, the stress is decomposed into its hydrostatic and shear components, 

 𝛔 = −𝑝𝐈 + 2𝜂𝐃[𝐮],  (3) 

where 𝑝 is hydrostatic pressure in the fluid, 𝜂 is the viscosity (assumed constant), and 2𝜂𝐃[𝐮] is rate-
of-strain tensor. 
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Relations (1)-(3) are to be supplemented by the appropriate initial conditions 

 𝐮(0) = 𝐮0 on Ω,  (4) 

     ∇.𝐮0 = 0,  (5) 

and the boundary conditions 

 𝐮 = 𝐮Γ(𝑡) on Γ,  (6) 

 ∫ 𝐮Γ(𝑡)Γ 𝐧� = 0,  (7) 

where 𝐧� is unit normal vector pointing out of the Γ. 

2.2. Finite Element formulation 

Let introduce spaces of approximation and test functions of velocities and pressure: 

𝕎ℎ = {𝑣ℎ ∈ 𝐶0(Ω)2,∀𝑇 ∈ 𝒯ℎ}, 

𝕎𝑜ℎ = {𝑣ℎ ∈ 𝕎ℎ,𝑣ℎ = 0 𝑜𝑛 Γ }, 

𝐿ℎ = {𝑞ℎ ∈ 𝐶0(Ω),∀𝑇 ∈ 𝒯ℎ}, 

𝐿0ℎ = �𝑞ℎ ∈ 𝐿ℎ� ∫ 𝑞ℎ𝑑𝑥 = 0Ω �. 

By using these finite-dimensional spaces we arrive at the following finite-element approximation 
of the problem (1)-(7): 

Find 𝐮ℎ ∈ 𝕎0ℎ, 𝑝 ∈ 𝐿0ℎ satisfying: 

 ∫ �𝜌 �d𝐮ℎ
d𝑡
� + (𝐮ℎ .∇)𝐮ℎ� . 𝐯ℎ𝑑𝑥 − ∫ 𝑝ℎΩ ∇. 𝐯ℎ𝑑𝑥 + ∫ 2𝜂𝐃[𝐮] ∶Ω  𝐃[𝐯]𝑑𝑥 = 0 Ω   (8) 

for all 𝐯ℎ ∈ 𝕎0ℎ, 

 ∫ 𝑞ℎ  ∇.𝐮ℎ = 0 Ω  for all 𝑞ℎ ∈ 𝐿ℎ,  (9) 

  𝐮h(0) = 𝐮0ℎ  on Ω, (10) 

where 𝐮0ℎ is an approximation of 𝐮0 satisfying the compatibility conditions 

 ∫ 𝑞ℎ ∇.𝐮0ℎ = 0 Ω  for all 𝑞ℎ ∈ 𝐿ℎ. (11) 

Since, in (8), 𝐮 is divergence-free and satisfies a Dirichlet boundary condition on all of Γ, we can 
write: 

∫ 2𝜂𝐃[𝐮𝐡] ∶Ω  𝐃[𝐯𝐡]𝑑𝑥 = ∫ 𝜂∇𝐮𝐡 ∶Ω ∇𝐯𝐡 𝑑𝑥 for all 𝐯ℎ ∈ 𝕎0ℎ. 

3. Time discretization by operator splitting 

3.1. Principle operator splitting: 

As stated by Glowinski (2003) numerical solutions of the relations (1)-(7) is not trivial due to the 
following reasons: 

o The above equations are nonlinear 

o Handling of the incompressibility condition (2) 

o The above equations are system of partial differential equations, coupled through the nonlinear 
term (𝒖 .∇)𝒖, the incompressibility condition ∇.𝒖 = 0, and sometimes through the boundary 
conditions. 

In the following sections, we show that a time discretization by operator splitting will partly 
overcome the above difficulties; in particular, decoupling of difficulties associated with the 
nonlinearity from those associated with the incompressibility condition. To introduce operator 
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splitting, the approach by Glowinski & Pironneau (1992) will be used. Let assume the following initial 
value problem: 

dφ
d𝑡

+ 𝐴(𝜑) = 0, 

𝜑(0) = 𝜑0, 

where A is an operator (possibly nonlinear, and even multivalued) from a Hilbert space H into itself 
and where φ0 ∈ H. There are numerous splitting operators to solve this problem (see Glowinski 2003).  

3.2. Fractional-step scheme 

In this work, the fractional-step scheme described by Marchuk (1990) is employed. Let assume 
decomposition of the operator A into the following nontrivial decomposition: 

𝐴 = 𝐴1 + 𝐴2 + 𝐴3, 

(by nontrivial, we mean A1, A2 and A3 are individually simpler than A). In the following, ∆𝑡 is a time 
step. 

Set 𝜑0 = 𝜑0, for n>= 0, 𝜑𝑛 being known we compute  𝜑𝑛+1/3, 𝜑𝑛+2/3 and 𝜑𝑛+1 as follows 

φ𝑛+13−φ𝑛

∆𝑡
+ 𝐴1 �𝜑

𝑛+13� = 𝑓1𝑛+1, 

φ𝑛+23−φ𝑛+13

∆𝑡
+ 𝐴2 �𝜑

𝑛+23� = 𝑓2𝑛+1, 

φ𝑛+1−φ𝑛+23

∆𝑡
+ 𝐴3(𝜑𝑛+1) = 𝑓3𝑛+1. 

By applying operator splitting to the problem (8-11) we obtain (with 0 ≤ α,β ≤ 1 and α + β = 1): 

Find: 𝐮𝑛+1/3 ∈ 𝕎ℎ and 𝑝𝑛+1/3 ∈ 𝐿ℎ 

 𝜌 ∫ 𝐮𝑛+1/3−𝐮𝑛

∆𝑡
. 𝐯𝑑𝑥 − ∫ 𝑝𝑛+1/3

Ω ∇. 𝐯𝑑𝑥 = 0 Ω  for all 𝐯ℎ ∈ 𝕎0ℎ (12) 

 ∫ 𝑞∇.𝐮𝑛+1/3𝑑𝑥 = 0 Ω  for all 𝑞ℎ ∈ 𝐿ℎ. (13) 

Find: 𝐮𝑛+2/3 ∈ 𝕎ℎ 

𝜌 ∫ 𝐮𝑛+2/3−𝐮𝑛+1/3

∆𝑡
. 𝐯𝑑𝑥 − 𝜌 ∫ �𝐮n+1/3.∇�𝐮n+2/3

Ω . 𝐯 𝑑𝑥 + 2𝛼𝜂 ∫ 𝐃�𝐮n+2/3� ∶Ω  𝐃[𝐯] 𝑑𝑥 = 0 Ω   (14) 

for all 𝐯ℎ ∈ 𝕎0ℎ. 

Finally find 𝐮𝑛+1 ∈ 𝕎ℎ 

 𝜌 ∫ 𝐮𝑛+1−𝐮𝑛+2/3

∆𝑡
. 𝐯𝑑𝑥 + 2𝛽𝜂 ∫ 𝐃[𝐮n+1] ∶Ω  𝐃[𝐯] 𝑑𝑥 = 0 Ω  for all 𝐯ℎ ∈ 𝕎0ℎ. (15) 

3.3 Finite element approximation 

The triangular Taylor-Hood element has been used, with the quadratic velocity and linear pressure 
interpolation (see Figure 1). 

 
Figure 1: The Taylor-Hood element. 
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The interpolation functions for velocity have following term: 

𝑁1 = 1 − 3𝜉 − 3𝜂 + 4𝜉𝜂 + 2𝜉2 + 2𝜂2, 

𝑁2 = −1𝜉 + 2𝜉2, 

𝑁3 = −1𝜂 + 2𝜂2, 

𝑁4 = 4𝜉 − 4𝜉𝜂 − 4𝜉2, 

𝑁5 = 4𝜉𝜂, 

𝑁6 = 4𝜂 − 4𝜉𝜂 − 4𝜂2, 

for pressure, linear interpolation is used 

𝐿1 = 1 − 𝜉 − 𝜂, 

𝐿2 = 𝜉, 

𝐿3 = 𝜂, 

where 𝜉, 𝜂 are isoparametric coordinates. 

The particular variables are approximated on the elements as linear combinations of interpolation 
functions and nodal values: 

𝑢(𝜉, 𝜂) = ∑ 𝑁𝑖𝑢𝑖6
𝑖=1 , 

𝑣(𝜉, 𝜂) = ∑ 𝑁𝑖𝑣𝑖6
𝑖=1 , 

𝑝(𝜉, 𝜂) = ∑ 𝐿𝑖𝑝𝑖3
𝑖=1 , 

where ui, vi a pi are the corresponding nodal values. The concept of isoparametric elements is used, 
where the geometry of an element is approximated using quadratic interpolation: 

x(ξ, η) = ∑ Nixi6
i=1 , 

𝑦(𝜉, 𝜂) = ∑ 𝑁𝑖𝑦𝑖6
𝑖=1 , 

where xiand 𝑦𝑖are the coordinates of the node points in the element. By differentiating this, we express 
the derivative operators as 

�
𝜕
𝜕𝑥
𝜕
𝜕𝑦

� = �

𝜕𝑥
𝜕𝜉

𝜕𝑦
𝜕𝜉

𝜕𝑥
𝜕𝜂

𝜕𝑦
𝜕𝜂

� �

𝜕
𝜕𝜉
𝜕
𝜕𝜂

�, 

The integrals in the weak form are evaluated numerically using the Gaussian quadrature formula 
(Sarada and Nagaraj 2010). 

This method has been implemented in the Matlab; yet further, particles including extensions and 
modification of liquid to fresh concrete flow will already be implemented in the C++. 

4. Numerical validations: 

The accuracy of prototype Matlab implementation has been verified using two benchmark problems: 
the Poiseuille flow between parallel plates and driven cavity flow. 

4.1. Poiseuille flow 

In this classic test, the steady state velocity and pressure distributions is simulated for a fluid moving 
laterally between two plates whose length and width is much greater than a distance separating them. 
The geometry, boundary and initial conditions are illustrated on Fig 2. The domain is divided into 400 
elements, the height is 1 and the length is 4. The stationary profile of velocity profile at outflow is 
quadratic. The mass density is 𝜌 = 1.0 𝑘𝑔/𝑚3, and the viscosity is 𝜂 = 10−2𝑃𝑎 𝑠. The results 
correspond with analytic solution. 
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When time step ∆𝑡 = 0.005  is chosen the implemented simulations renders results in time 𝑡 = 1,5 𝑠  
 

 

Figure 2: The geometry and the boundary conditions of flow in tube test. The used mesh consists of 
861 nodes and 400 elements. 

4.2. Driven Cavity flow 

The driven cavity flow is a typical problem applied to verify numerical model in fluid dynamics. We 
simulate the flow inside closed cavity and compare the results with the model developed by the other 
researches (Botella and Peyret, 1998; Rabenold, 2005). Figure 3 shows geometry of the problem, 
computational mesh and applied boundary conditions. The viscosity is set to 𝜂 = 10−2𝑃𝑎 𝑠, and the 
Reynold’s number is computed as 1/𝜂 (based on geometry of size 1 and maximum velocity 1). The 
mass density is 𝜌 = 1.0 𝑘𝑔/𝑚3, and the time step is ∆𝑡 = 0.01. The results are in good agreement, 
even though the present values are restricted to the 30x30 grid points (see table No. 1).  

 

Figure 3: The geometry and the boundary conditions of driven cavity flow test. The used mesh consists 
of 961 nodes and 450 elements. 

Tab. 1: Velocity extreme through cavity centerlines at 𝑅𝑒 = 100 

method 𝑢𝑚𝑖𝑛 𝑣𝑚𝑖𝑛 𝑣𝑚𝑎𝑥  

Present -0.2165 -0.2493 0.1771  

Botella and Peyret -0.21279 -0.25266 0.17854  

Rabenold -0.2140424 -0.2538030 0.1795728  
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Figure 4: Velocity profiles through cavity centerlines at 𝜂 = 10−2𝑃𝑎 𝑠 and 30 x 30 grid size. 

5. Conclusion 

Presented work describes formulation and implementation of non-stationary, incompressible flow 
finite element solver. The Tayler-Hood elements (P2-P1) have been implemented. For time 
discretization the operator splitting method is used and it reduces computation of velocity and pressure 
together to one time substep whereas in other substeps only velocity is being solved. The model is 
verified using standard benchmark tests from the literature. 
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