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Abstract: Interest in Micro Air Vehicles (MAVs) capable of hovering is gradually increasing because they
can be a low-cost solution for security applications or remote inspection. Much research has centred on
designs inspired by insects and hummingbirds, where the propellers are replaced by flapping wings. It
is assumed that that flapping wings improve, at small scales, both manoeuvrability and energy efficiency.
This numerical work based on quasi-steady aerodynamics applies to a hummingbird robot with a pair of
flapping wings and a 12 cm wingspan. We construct a control derivatives matrix that estimates the effect
of each wing kinematics parameter on the cycle averaged wing forces and forms the key stone of the flight
controller. We implement the controller in a simulation model with rigid body dynamics and ”continuous”
(i.e. not averaged) aerodynamics. The simulation results show that the controller stabilizes the robot
attitude and controls the flight in 4 DOF (translation in any direction + yaw rotation) by modifying only 2
wing kinematic parameters per wing - the flapping amplitude and the mean wing position. Other control
parameters are possible. Thus, various mechanical design solutions can be studied in the future.

Keywords: Micro Air Vehicle, flapping wings, control.

1. Introduction

Micro Air Vehicles (MAVs) are small flying robots with remote or autonomous operation designed to
fly indoors or outdoors. They are being used by private companies as well as law enforcement units for
aerial photography, terrain reconnaissance and video surveillance. A vast majority of MAVs is based on
fixed and rotary wings.

MAVs with flapping wings have been researched intensively during recent years. These bio-inspired
designs mimicking hummingbirds and insects are believed to combine energy efficient lift production,
capability of hovering flight and high maneuverability. First successful flapping wing MAVs had drag-
onfly morphology (de Croon et al., 2009), see Fig. 1 left. Nano Hummingbird (Keennon et al., 2012)
is the first man-made flapping wing MAV to take-off, hover and fly in any direction. The researchers
managed to integrate avionics, flapping and control mechanisms and a battery sufficient for 11 min flight
into a robot of 19 g with 16.5 cm wingspan (Fig. 1 right).

Nano Hummingbird 
by AeroVironment Inc.

(Keennon et al., 2012)

weight 19 g

wingspan 16.5 cm

endurance 4-11 min 

DelFly Micro
by TU Delft

(de Croon et al., 2009)

weight 3.07 g

wingspan 10 cm

endurance 3 min 

Fig. 1: Examples of MAVs with flapping wings

Characteristic features of flapping flight include high flapping frequencies (from 15 Hz in large hum-
mingbirds to hundreds of Hz in insects) and high angles of attack. The aerodynamic mechanisms of
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flapping wings responsible for high lift production were described in (Sane, 2003; Shyy et al., 2010).
Studies on flapping flight stability and control mechanisms, recently reviewed by (Orlowski & Girard,
2012), show that the flapping flight is naturally unstable. It is controlled by modifications of wing trajec-
tory.

Many simulations of flapping flight have been carried out, the majority of them uses quasi-steady
aerodynamics derived from thin airfoil theory using blade elements theory (Sane & Dickinson, 2002).
Various control approaches were successfully used: pseudo-inverse allocation + PID (Orlowski et al.,
2010), output-feedback LQR (Deng et al., 2006a,b), back-stepping and feedback linearization (Rako-
tomamonjy et al., 2010) or Central Pattern Generator control that mimicks spinal cords (Chung &
Dorothy, 2010).

In this numerical work, based on quasi-steady aerodynamics and rigid body dynamics, we present a
control strategy that is similar to cascade control of quadrocopters (Michael et al., 2010). Flight is con-
trolled in 4 DOF (any direction + turning); vertical flight and turning is controlled directly, while flight
forward/backward and sideways is achieved by body pitching and rolling respectively. We parametrize
the wing kinematics and study the effect of each parameter on cycle averaged forces and moments gen-
erated by the wing. From the results we construct a control derivatives matrix (similar to (Doman et al.,
2010)), that is used to transform the control forces/moments into wing motion changes. We discuss the
selection of control parameters as these are crucial for design of wing mechanism in future robot. Finally
we test the control performance with a selected set of control parameters in simulation.

2. Mathematical model

2.1. Wing motion

Motion of a flapping wing can be described by 3 angles (Fig. 2): sweep angle ϕ, deviation angle δ and
wing inclination angle α∗. They are measured from the mean stroke plane, which is inclined from the
body horizontal plane xByB by Θ.

Fig. 2: Wing motion angles: sweep angle ϕ, deviation angle δ and inclination angle α∗

In the current study we assume harmonic motion in all three DOFs according to equations

ϕ = ϕ0 + ϕmcos(2πft)

α∗ = α0 + (π/2 − αm)sin(2πft− φα)

δ =

{
δm1sin(2πft)
δm2sin(4πft)

(1)

where t is time. The motion is parameterized by 9 parameters (Fig. 3): flapping frequency f , mean
stroke plane angle Θ, sweep angle amplitude ϕm and offset ϕ0; inclination angle amplitude αm, offset
α0 and phase shift φα; deviation angle amplitude δm1 (resulting into an oval trajectory) or δm2 (resulting
into a ”figure 8” trajectory).

2.2. Quasi-steady aerodynamics

We use quasi steady approach (Sane & Dickinson, 2002) to model the forces generated by flapping
wings. The wing is assumed to be flat and rigid. The model was derived from steady flow thin airfoil
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δm2 ϕ0

ϕm

Θ

αm+α0

αm-α0
Downstroke

Upstroke

δm1

Fig. 3: Wing motion angles: sweep angle ϕ, deviation angle δ and angle of attack α

theory using blade element theory. Experimentally obtained force coefficients published by (Dickinson
et al., 1999) include, at least partially, the effects of ”unsteady” flow mechanisms typical for flapping
flight.

We consider two force components: translational force and rotational force. Because they result
mainly from pressure field distribution around the wing they are placed to the center of pressure (CP).
We neglect the effect of added mass inertia of the surrounding fluid (virtual mass force) as its contribution
to the total force is very small.

The necessary wing geometry parameters are displayed in Fig. 4, definitions are given in (Ellington,
1984). S is the surface of a single wing, R is the wing length, c is the mean chord length, r̂ = r/R is
non-dimensional position of a wing blade and ĉ = c/c is the normalized chord length, x̂0 is the non-
dimensional position of the rotational axis. Similar to other studies we assume the center of pressure (CP)
is located, in chord-wise direction, at the rotational axis. The span-wise CP location RCP is determined
by the product of wing length R and the radius of second moment of inertia r̂2.

dr

r2(S)R

Center of pressure

Wing centroid

c/2

c/2
c/4

Axis of wing rotation

R

x
0
c

r

c(r)

Fig. 4: Wing geometry parameters

According to (Deng et al., 2006a) the total force can be expressed, in normal and tangential direction
of the wing, as

FT,tr = 0.5ρSU2
CPCT (α)

FN,tr = 0.5ρSU2
CPCN (α) + π

(
3

4
− x̂0

)
ρα̇
UCP

r̂2
c2R

∫ 1

0
r̂ĉ2(r̂)dr̂ (2)

where ρ is the air density and CN (α) and CT (α) are the force coefficients given as a function of angle
of attack α by expressions

CN (α) = 3.4 sin(α)

CT (α) =





0.4 cos2(2α) 0 ≤ |α| < π
4

0 π
4 ≤ |α| < 3π

4
−0.4 cos2(2α) 3π

4 ≤ |α| < π
(3)

2.3. Center of pressure velocity and angle of attack

To express the CP velocity we introduce three coordinate frames: global frame G, body-fixed frame B
and wing-fixed frame W. They are displayed in Fig. 5. A left superscript is used to indicate the frame in
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which a vector or matrix is expressed. The CP velocity is a resultant of body absolute motion (velocity
vGB, angular velocity ωGB) and the wing rotation around the body (angular velocity ωBW). Using the
simultaneous motion theory we can express the velocity of CP in W frame as

WvGCP =RWB

(
BvGB + BωGB × BrBCP

)
+ WωBW × WrWCP (4)

where rWCP and rBCP is the CP position in the wing frame and in the body frame respectively. RWB

is the matrix of rotation from wing frame to body frame (given by wing position angles ϕ, δ and α∗).

yB

OB

zB

rBW
rWCP

vGCP

CP

OW

zG

xG
yG

OG

rGB

xB

xW

yW

zW

Fig. 5: Coordinate frames and center of pressure velocity
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CP
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to flapping
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xW

zW

CP

UCP

α

+α

stroke plane

xWzW

CP

UCP

α

+α

Fig. 6: Angle of attack in various situations

The angle of attack is measured between the wing chord and the velocity vector of the wing. Since
not only the magnitude but also the direction of CP velocity changes, the aerodynamic angle of attack is
also affected as can be seen in Fig. 6. Situations, where angle of attack is negative or greater than 90◦

are also sketched. The magnitude of the CP velocity vector in xWzW plane of the wing is

UCP =
√

W v2
GCPx + W v2

GCPz (5)

According to Fig. 6 the angle of attack can be computed as

α = atan2(−W vGCPz,−W vGCPx) (6)

where the atan2 function returns values between −π and π.

2.4. Body dynamics

The dynamics of the flying robot can be described, under rigid body assumption, by Newton-Euler mo-
tion equations. Similar to an aircraft (e.g. (Padfield, 2007)) we obtain 12 ordinary differential equations
with 12 unknown coordinates - velocity (u, v, w), angular velocity (p, q, r), position (x, y, z) and orien-
tation expressed by Roll-Pitch-Yaw angles (φ, ϑ, ψ) - see Fig.7. By omitting the equations for position
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and heading (yaw) angle ψ the system is reduced to 8 equations

u̇ = − (wq − vr) +X/m+ g sinϑ

v̇ = − (ur − wp) + Y/m− g cosϑ sinφ

ẇ = − (vp− uq) + Z/m− g cosϑ cosφ

Ixxṗ = (Iyy − Izz) qr + Ixz (ṙ + pq) + L

Iyy q̇ = (Izz − Ixx) pr + Ixz

(
r2 − p2

)
+M

Izz ṙ = (Ixx − Iyy) pq + Ixz (ṗ− qr) +N

φ̇ = p+ q sinφ tanϑ+ r cosφ tanϑ

ϑ̇ = q cosφ− r sinφ (7)

where m is the body mass. Ixx, Iyy, Izz and Ixz are the non-zero moments and product of inertia in body
frame (products Ixy and Iyz are both zero due to body symmetry). Aerodynamic forces and moments
are represented by vectors (X,Y, Z) and (L,M,N) respectively.

xB

zB

yB

u, X

v, Y

w, Z

ϕ
p, L

ψ
r, N

ϑ
q, M

OB

Fig. 7: Definition of body coordinates

We transform the wing forces (2) into body frame as follows

[X,Y, Z]T =
∑

i

[Xi, Yi, Zi]
T =

∑

i

RBWi [FTi, 0, FNi]
T (8)

[L,M,N ]T =
∑

i

BrBCPi
× [Xi, Yi, Zi]

T (9)

where index i stands for the left and the right wing. RBW is the transformation matrix from B frame to
W frame (RBW = RWB

T ) and BrBC is the CP (force application point) position expressed in the body
frame as

BrBC = BrBW + RBW
WrWCP (10)

with BrBW = [±w/2, 0, l1]T defining the position of the right/left wing base in the body frame and
WrWCP = [0,±RCP , 0]T defining the CP position inside the right/left wing frame.

2.5. System linearization

The mathematical model introduced in previous sections is nonlinear and was used in simulations. For
control design a linear model is preferred.

The system dynamics (7) include aerodynamic forces and moments (8-9) that are functions of wing
motion parameters p = [f,ΘL, ϕmL, ϕ0L, αmL, α0L, φαL, δm1L, δm2L,ΘR, · · · , δm2R]T , system state
x = [u, v, w, p, q, r, φ, ϑ]T and time t. Assuming the flapping frequency is much higher than the band-
width of the system, the aerodynamic forces can be replaced by their cycle averaged values (mean values
over one wingbeat), e.g.

X =

∫ 1
f

0
X(x,p, t)dt = X(x,p) (11)
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that depend only on x and p. We use small perturbation theory to rewrite the states and wing motion
parameters as

x = xe + δx, p = pe + δp (12)

where subscript e signifies the equilibrium values and δ is the perturbation. We approximate the aerody-
namic forces and moments by the linear terms of Taylor’s expansion. For force in x-axis we obtain

X(x,p) = Xe(xe,pe) +

6∑

i=1

∂X

∂xi
δxi +

n∑

j=1

∂X

∂pj
δpj (13)

where Xe is the cycle averaged force generated in equilibrium and n is number of wing kinematic pa-
rameters. The terms of the first summation are the derivatives with respect to body velocities and angular
velocities called the stability derivatives. If taken with an opposite sign they represent aerodynamic
damping. The second summation terms are the derivatives with respect to changes in wing motion. They
are called the control derivatives. Further the overbar notation for cycle averages is dropped and the
notation of the derivatives is shortened in the following manner

∂X

∂u
= Xu ,

∂X

∂v
= Xv , . . . ,

∂X

∂f
= Xf ,

∂X

∂Θ
= XΘ , . . . (14)

In this study we consider only near hover flight. Thus, all the equilibrium states are zero (ue = ve =
we = pe = qe = re = φe = ϑe = 0) and the perturbed states are equal to their absolute values (δx = x).
The wing motion parameters pe must ensure the trim: the z-force must be in balance with the gravity
force (Ze = mg), while the remaining forces and moments need to be zero (Xe = Ye = Le = Me =
Ne = 0).

First we suppose the wing kinematics does not change (δp = 0). Instead, we assume we can apply
an arbitrary external force or moment on the body. According to previous works on passive stability
(Taylor & Thomas, 2002; Taylor et al., 2003; Zhang & Sun, 2010) as well as to our results there exists no
aerodynamic coupling between the longitudinal and lateral system. By neglecting second order terms,
we can rewrite the equations as two linear subsystems represented in state space as

[
u̇, ẇ, q̇, ϑ̇

]T
= Along [u,w, q, ϑ]T + Blong[X,Z,M ]T

[v̇, ṗ, ṙ, φ̇]T = Alat [v, p, r, φ]T + Blat[Y, L,N ]T (15)

where the system and control matrices, A and B, are expressed as

Along =




Xu
m

Xw
m

Xq

m g
Zu
m

Zw
m

Zq

m 0
Mu
Iyy

Mw
Iyy

Mq

Iyy
0

0 0 1 0


 , Alat =




Yv
m

Yp

m
Yr
m −g

LvIzz+NvIxz
IxxIzz−I2

xz

LpIzz+NpIxz

IxxIzz−I2
xz

LrIzz+NrIxz
IxxIzz−I2

xz
0

LvIxz+NvIxx
IxxIzz−I2

xz

LpIxz+NpIxx

IxxIzz−I2
xz

LrIxz+NrIxx
IxxIzz−I2

xz
0

0 1 0 0




Blong =




1
m 0 0

0 1
m 0

0 0 1
Iyy

0 0 0


 , Blat =




1
m 0 0

0 Izz
IxxIzz−I2

xz

Ixz
IxxIzz−I2

xz

0 Ixz
IxxIzz−I2

xz

Ixx
IxxIzz−I2

xz

0 0 0


 (16)

In the following section a controller will be designed, assuming the external forces and moments as
inputs. In reality, these will be generated by the wings. From the approximation in (13) we can write a
relation between cycle averaged forces/moments and modifications of wing kinematics parameters ∆p
as

[X,Y, Z, L,M,N ]T = J∆p (17)
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where J is the matrix of control derivatives defined as

J =




Xp1 Xp2 · · · Xpn

Yp1 Yp2 · · · Ypn

...
...

. . .
...

Np1 Np2 · · · Npn


 (18)

The kinematic parameters modifications that should produce desired forces/moments are estimated by a
pseudoinverse of the previous relation

∆p = J+[X,Y, Z, L,M,N ]T (19)

3. Control design

In the previous section we have presented the complete mathematical model which is necessary to per-
form an open loop simulation. The next task is to develop a 4DOF flight controller, allowing us to fly
foreward/backward, up/down and sideways and to steer by changing the heading angle. As we show
further the system itself is unstable. Thus, the controller also needs to stabilize the attitude.

This section applies to a robot with wing and body properties of a typical hummingbird (Tab.1,2).
We take the mass of a ruby-throated hummingbird (Chai et al., 1996) and estimate the inertia and wing
base position according to a simplified 3D model in Catia with typical body dimensions. We used Matlab
image processing to obtain the wing geometry parameters from an image of a real hummingbird wing
profile (Fig. 8). Wing kinematic parameters for equilibrium (i.e. hover) pe are in Tab. 3. They were
chosen to satisfy the trim condition with a relative error below 0.5% while being close to real animal
observations (Tobalske et al., 2007).

Tab. 1: Aerodynamic parameters

R (mm) c (mm) S (mm2) x̂0 (-)
∫ 1
0 r̂ĉ

2(r̂)dr̂ (-) r̂2 (-) ρ (kg.m-3)

48 12.7 611 0.25 0.428 0.492 1.2

Tab. 2: Body parameters

m (g) Ixx (g.mm2) Iyy (g.mm2) Izz (g.mm2) Ixz (g.mm2) l1 (mm) w (mm)

4.32 492 557 411 -220 10 14

Fig. 8: Hummingbird wing profile

3.1. System matrices

We evaluate the stability derivatives in hover as follows. We keep the wing kinematics constant and sym-
metric for both wings (pe). We pick several values of one of the velocities from a defined neighborhood
around zero while keeping the others in zero. In each case we calculate the vector of cycle averaged
forces and moments in body frame. The relationships between the averaged forces/moments and the
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Tab. 3: Wing kinematics for hover

f (Hz) Θ (◦) ϕm (◦) ϕ0 (◦) αm (◦) α0 (◦) φα (◦) δm1 (◦) δm2 (◦)

48 0 70 0 30 0 0 0 0

varying velocity can be plotted - the derivatives are represented by a tangent to the curves in the origin.
We proceed similarly to get the derivatives with respect to the remaining velocities. We find out that
many of them are zero, so we only keep Xu, Xq, Yv, Yp, Zw, Lv, Lp, Mu, Mq and Nr. This justifies
splitting the system into longitudinal and lateral part. It further reveals that vertical translation and yaw
rotation are aerodynamically decoupled from the remaining motions.

The expressions in the system matrices reduce to

Along =




Xu
m 0

Xq

m g

0 Zw
m 0 0

Mu
Iyy

0
Mq

Iyy
0

0 0 1 0


 , Alat =




Yv
m

Yp

m 0 −g
LvIzz

IxxIzz−I2
xz

LpIzz

IxxIzz−I2
xz

NrIxz
IxxIzz−I2

xz
0

LvIxz
IxxIzz−I2

xz

LpIxz

IxxIzz−I2
xz

NrIxx
IxxIzz−I2

xz
0

0 1 0 0


 (20)

In the longitudinal system a vertical motion is fully decoupled from the rest. In the lateral system all
three motions are coupled. While the sideways motion and roll are coupled aerodynamically, yaw and
roll are coupled due to non-zero inertia product Ixz . Thus, it would be possible to avoid this coupling by
designing a robot with mass distribution that would be symmetrical around all the three body axes.

Calculation of system poles gives results that are in accordance with previous stability studies (re-
viewed in (Orlowski & Girard, 2012)). Both systems, longitudinal and lateral, have similar pole structure
resulting into one unstable oscillatory natural mode and two (fast and slow) stable natural modes and need
to be stabilized.

3.2. Control strategy

We have shown in the preceding section that the system can be split into 3 decoupled subsystems -
longitudinal dynamics (u,q), vertical dynamics (w) and lateral + yaw dynamics (v,p,r). Moreover, lateral
and yaw dynamics are coupled by inertia product Ixz - there is no aerodynamic coupling. We can take an
advantage of this decoupling and use a decentralized cascade control strategy similar to quadrocopters
(Michael et al., 2010). The controller is formed by two loops. An inner loop is stabilizing the attitude
(roll φ and pitch ϑ) by respective moments L, M . An outer loop controls the flight. Flying up/down
and turning is controlled directly by Z force and N moment. Forwards/backwards and sideways flight is
controlled indirectly by body inclination around pitch and roll axis. The controller scheme is in Fig. 9.
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Fig. 9: Cascade control: the inner loop controls attitude, the outer loop controls velocity
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Since we develop the controller for a cycle averaged linear system, the best performance is achieved
with a discrete design. The sampling frequency is equal to the flapping frequency. The attitude in the
inner loop, φ and θ, is controlled by a pair of lead compensators. The velocities in the outer loop, u, v,
w and r, are controlled by 4 PI controllers. The control gains were tuned for the linearized system (15)
using standard techniques.

3.3. Control derivatives

The forces from the controller are transformed into wing motion by the control derivatives matrix (18).
We compute the control derivatives in nearly the same way as the stability derivatives. Since we are
around hover we keep the body velocities and angular velocities zero. We chose one parameter, pi,
that we will vary around its equilibrium pei. All the other parameters are kept in equilibrium pe. We
evaluate the cycle averaged forces and moments for each value. If we plot the averaged forces/moments
as a function of the selected parameter, the control derivatives are given by the slopes of tangents to the
resulting curves in pei.

We split the results into two parts. When applying the wing kinematic changes symmetrically on
both wings (subscript S) only the longitudinal system forces and moment (X , Z and M ) are modified.
The linearized relationship can be written as

[X,Z,M ]T = JS [fS , ϕmS , ϕ0S , αmS , α0S , φαS , δm1S , δm2S ,ΘS ]T (21)

To see the importance of each parameter we divide the row belonging to moment by characteristic length
RCP . The normalized matrix, with units N/Hz or N/◦, is evaluated as

ĴS =




ϕmS ϕ0S αmS α0S φαS δm1S δm2S ΘS fS

X 0 0.212 0 −1.07 0 0.107 0 −0.739 0
Z 1.21 0 0.446 0 −0.248 0 1.18 0 1.77
M

RCP
0 −0.519 0 −0.240 0 0.702 0 −0.192 0


 (22)

For asymmetric changes of wing kinematics (subscript A) only the lateral system force and moments
(Y , L and N ) are affected. We get

[Y, L,N ]T = JA [ϕmA, ϕ0A, αmA, α0A, φαA, δm1A, δm2A,ΘA]T (23)

where the control derivatives matrix, normalized as above, is

ĴA =




ϕmA ϕ0A αmA α0A φαA δm1A δm2A ΘA

Y −0.288 0 0.0956 0 0.401 0 −0.136 0
L

RCP
−1.03 0 −0.615 0 0.176 0 −1.76 0

N
RCP

0 0.0628 0 −1.63 0 0.0317 0 −0.828


 (24)

By studying the matrices above we can identify two groups of parameters according to their effect
on generated forces and moments. The first group includes flapping frequency f , sweep amplitude ϕm,
angle of attack amplitude αm, phase shift φα and amplitude of figure eight-like deviation δm2. If we
modify these parameters symmetrically on both wings, we control the vertical force Z. If we modify
these parameters, excluding the flapping frequency, asymmetrically (with positive sign on left wing and
with negative sign on right wing) we modulate the L moment (roll) and Y force.

The second group includes sweep angle offset ϕ0, angle of attack offset α0, amplitude of oval-like
deviation δm1 and mean stroke plane inclination Θ. Symmetric changes of these parameters result into
M moment (pitch) and X force modulation. Same parameters taken asymmetrically modify the yaw
moment N .

3.4. Choice of control parameters

In the real robot design the number of parameters needed to control the flight needs to be minimized.
The matrices (22) and (24) show, that we only need two parameters per wing to generate independently
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the four control forces/moments Z, L, M and N . While this approach leaves us no control of the ”par-
asite” forces X and Y , it allows a simpler design of the future robot wing motion mechanism. Another
parameter per wing is necessary to assure that X and Y is zero. However, when tested in simulation
the controller performance decreased compared to the simpler two parameter per wing controller. Our
explanation is that the additional constraints actually reduce the effect of the parameter change on the
control force/moment.

For the selected pair of parameters p1, p2 we construct a reduced control derivatives matrix

Jred =




Zp1L Zp1R Zp2L Zp2R

Lp1L Lp1R Lp2L Lp2R

Mp1L Mp1R Mp2L Mp2R

Np1L Np1R Np2L Np2R


 (25)

Finally, we transform the control forces/moments into wing kinematic parameters as

[p1L, p1R, p2L, p2R]T = Jred
−1[X,L,M,N ]T (26)

There are many possible choices of the two control parameters. Since we ”ignore” the effect on
X and Y forces, full rank of the reduced control derivatives matrix Jred does not guarantee successful
control. Moreover we base the control design on the linearized model, while the original system is
nonlinear. This requires that the control performance of each combination needs to be tested in nonlinear
simulation. In the real robot the final choice of the control parameters will also be constrained by the
feasibility of the wing control mechanism design of each choice.

In the next section we present results for ϕm and ϕ0 chosen as control parameters. Their effects on
generated force/moments are sketched in Fig. 10.

Z (thrust) L (roll) M (pitch) N (yaw)

+Δϕm +Δϕm +Δϕm-Δϕm -Δϕ0 -Δϕ0 -Δϕ0+Δϕ0

Fig. 10: Control force and moments generated through wing kinematics parameters ϕm and ϕ0

4. Simulation results

We evaluated the controller performance by simulations in Matlab/Simulink. The simulation model
included nonlinear models of aerodynamics and 6 DOF body dynamics, as described in chapters 2.1.-
2.4.. The simulation results are presented for two test trajectories in the four controlled DOFs (velocities
u,v,w, angular velocity r). The flight was controlled by the sweep angle amplitude ϕm and sweep angle
offset ϕ0.

In the first trajectory we applied a step command in each DOF, one after another, to show the control
performance in each single DOF with the coupling effects with the rest of the nonlinear system. The
results are in Fig. 11 left. We observe that the longitudinal and vertical dynamics are decoupled from the
rest of the system, as indicated by the linearized model. The high frequency oscillation is caused by the
pulsating forces due to flapping motion, however the mean values are closely following the linear results.
The lateral dynamics and yaw dynamics are coupled, as predicted by the linearization. The control
performance in lateral direction is worse than expected, but the system remains stable. The flapping
oscillation in lateral and yaw system occurs only when the wing kinematics differs between the wings,
but again the mean value follows the command.

The time behavior of the control parameters shows that the necessary changes in wing kinematics
are very small. Although the control parameters should be zero in hovering flight according to linearized
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Fig. 11: Step response: step commands one after another for each controlled DOF (left), all step com-
mands at once (right)

model, we observe that sweep amplitude ϕm is approximately -1◦ when all commands are zero. The
explanation is that the flapping motion induces a body oscillation that changes the velocity of the wing
and subsequently also the angle of attack. This results into slight increase of the cycle averaged lift force
that is then compensated by decreasing the sweep amplitude.

The control parameter peaks during the step commands are all below 5◦ and could be further de-
creased if the controller was tuned less aggressively. The only exception is the rotation around yaw axis
(step in r) during which the sweep offset ϕ0 remains relatively high (but still below 5◦). This is however
in accordance with the control derivatives matrix (24), where we can see that the effect of ϕ0 on yaw
moment R is relatively low. A more effective parameter for yaw control may be chosen in future.

In the second trajectory the step command was sent to all the DOFs at once to reveal any control
cross-coupling effects and evaluate the potential decrease of control performance. We can see in Fig.
11 right that apart from slight increase of transition times there is no significant change in the overall
performance and also the control parameters remain in a similar range.

Karásek M., Preumont A. 617



5. Conclusions

In this paper we presented a simulation model of a hummingbird sized tailless flapping-wing flying robot.
The mathematical model was based on rigid body dynamics and quasi steady aerodynamics.

First, we showed by employing system linearization and cycle averaging techniques that the system is
decoupled and can be split into separate subsystems for vertical, longitudinal and lateral+yaw dynamics.

Then we parameterized the wing motion and studied the effect of each parameter on the cycle aver-
aged forces. From the results we built a control derivatives matrix. We showed, that the parameters can
be split into two groups. The first group parameters can produce a lift force, when changes are applied
symmetrically on both wings, and a roll moment, when applied asymmetrically. The second group pa-
rameters produce pitch or yaw moments when being modified symmetrically or asymmetrically. Thus,
to generate the necessary control force and moments only two wing parameters per wing are neces-
sary. Several choices of the control parameters are possible. The control derivatives matrix was used to
transform the control forces and moments into wing motion changes.

Finally, the controller was implemented into the simulation model and tested. We chose sweep (flap-
ping) amplitude and sweep offset (mean wing position) as the control parameters. The controller showed
good performance with almost no cross-coupling effects. Apart from lateral dynamics, the nonlinear
system response was almost identical with the one of the linearized system. The control performance
in sideways flight is decreased, yet still acceptable. The linear approximation of non-linear behavior of
lateral dynamics seems to be less precise. A better control of lateral direction flight might be searched in
the future.

The results of this study will be further used in the development of the flapping wing robot. We
have shown that several choices of the two control parameters are possible. An implementation of these
parameters into mechanical design of the robot will be researched in future.
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