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Abstract:  The article is focused on analysis of the cable membrane structure mainly the dynamic 
relaxation method and parameters which influence the stability and the speed of computation. 
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1. Motivation 

Light cable membrane construction founds its utilization mainly on the structures where it is necessary 
to cover large areas like warehouses, exhibition areas and stadiums. Thanks to the modern design, 
many cable membrane structures were built in the last twenty years. 

There are many causes for their permanently higher utilization. They can be transported with very 
low costs because they are very light. Their lightness also causes that large areas should be covered 
under good costs for area unit. They can be prefabricated which leads to effective build considering 
usage of material. One of the most noticeable aspects is design. Cable membrane structures are highly 
visible. In case of design they are significant architectonical elements. The examples of cable 
membrane structures are shown in Figure 1 and Figure 2. 

  
Fig. 1:  Tram station K Barrandovu, Prague Fig. 2:  Munich Olympic Stadium 

2. Design of cable membrane structures 

By Topping and Iványi (2007) there are several steps which are necessary for design cable membrane 
structure. At the beginning shape definition, discussion about general shape of structure between client 
and architect is necessary. After the shape definition the engineering model can be created and the 
main parameters for form finding are defined. During the form finding process the equilibrium state of 
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cable membrane structure is found and the specific boundary conditions are obtained from this 
process. The final equilibrium state is found by optimizations methods. Using geometrical 
optimization the surface is described by a mathematical surface equation. In the second type of 
optimization, equilibrium form finding methods, the equilibrium state is numerically computed. 
Equilibrium form finding methods may be employed to analyse greater and more complicated 
constructions and structures with unconventional shapes. In the next step, the response of construction 
to loading is analysed. Now, the appropriate shape of structure is known and it is necessary to make 
the cutting pattern generation and design the details. This minimizes the wastage of material during 
the production plan parts of construction from roll of material. 

The aim of this article is to introduce the main methods which can be used for the cable membrane 
structure analysis. 

3. Cable membrane structures analysis 

Various methods are used for cable membrane structure analysis. One of the simplest methods is grid 
method. When the horizontal forces are in equilibrium, the height of grid points can be calculated from 
the equilibrium of vertical forces. System of linear equations is a set considering all nodes of grid. 

Further, there are simply numerical methods, finite difference method and finite element method. 
Nowadays it is possible to solve constructions with arbitrary irregular shape and prestressed 
construction using these methods. 

From many various methods there are two others suitable. Force density method which is based on 
the constant ratio between the force in the element and the length of the element. At last the dynamic 
relaxation method which is highly used for the form finding and analysis of construction.  

4. Dynamic relaxation 

Dynamic relaxation is not used for finding dynamic response of construction but it is used for static 
problems using a fictitious dynamic analysis. In this method the motion of construction from the time 
of loading to the state of equilibrium is traced step by step. From the motion it is possible to determine 
the curve of the construction without compile the matrix of stiffness. This characteristic leads to the 
conclusion that the dynamic relaxation is a method, which is suitable for highly nonlinear problems. 

The method is a direct application of Newton’s second law of motion ( .F M a= ). During the 
static analysis of construction the fictitious damping is used. The proportional, frequently critical 
damping factor is mostly applied. Iteration to the static solution is relatively fast when critically 
damped or overdamped construction is used. The influence of various damping factors is shown in 
Figure 3. Speed of iteration also depends on the fictitious masses. Because the masses are fictitious, 
their appropriate distribution between joints can accelerate the speed of calculation. 

 

 
Fig. 3:  One degree of freedom time – displacement trace 
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4.1. Numerical procedure 

The Newton’s second law of motion is presented in the equation which describes residual forces in 
time t and joint i. To the calculation of residual forces it is necessary to add the effect of prestress. The 
Equation (1) describes the calculation of residual forces in x direction: 

 Rix
t =Mix . !vix

t +Cix .vix
t  (1) 

where: 
t
ixR   is the residual force at joint i at time t 

ixM  is the fictitious mass at joint i 

ixC   is the viscous damping factor for joint i 

,t t
ix ixv v!  are the acceleration and velocity at the time t at joint i. 

By calculating the response of construction to the loading it is necessary to determine the 
acceleration and velocity at joint at the demanded time. The result of substituting the average velocity 
and the acceleration over the time step !t into the Equation (1) is: 
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The rearrangement of the Equation (2) enables to calculate the velocity at the new time step 
(t+!t): 
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In the next step the Equation (3) is used to calculate the current coordinates of joint i: 

 ( ) ( )/2.t t t tt
i i ixx x t v+! +!= +!  (4) 

The residual forces are calculated from the Equation (5), where Tix represents the internal forces 
and Fix represents the applied loading including prestress. The internal forces are calculated at the 
joints where the residuals are determined – Equation (6). 

 ( ) ( )t t t t
ix ix ixR F T+! +!= +  (5) 
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where:  
0
ml          is the internal initial length of link 

( )t t
ml
+!    is the current length of link at time (t+!t) 

mEA      is the elastic modulus multiplied by the cross sectional area of the link m 

0
mT         is the internal prestress in link 

For calculating the current coordinates of joint i at the end of the first time step ( ( )t t
ix
+! ) it is 

necessary to set the initial conditions for time t=0: 0 0ixv = . Substituting initial conditions to the 
Equation (3) enables to calculate the initial velocity at time / 2t t= ! : 
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4.2. Dynamic relaxation method stability and convergence 

The stability and convergence of the dynamic relaxation is influenced by the distribution of fictitious 
nodal mass, the damping factor and the time interval of the step. During the calculation fixed time step 
is often used and other factors are tuned until the required accuracy and stability of calculation is 
reached. When the time step !t exceeds a critical value or fictitious masses are too low, numerical 
instability of the calculations will occur and the equilibrium state cannot be reached. This shortage can 
be eliminated by decreasing the time step or increasing the fictitious masses. Speed of convergence is 
partially affected by the damping factor. Critically damped or overdamped constructions have good 
speed of convergence. 

From the previously stated it is obvious that the tuning of the calculation parameters (time step, 
fictitious masses and damping factor) is really an attractive area of interest since these parameters have 
a large influence on the speed of calculation. Beside these factors are specific for each construction. 

 

  
Fig. 4:  Residual force and kinetic energy in the middle of span - damping factor 10 t.s-1 

  
Fig. 5:  Residual force and kinetic energy in the middle of span - damping factor 65 t.s-1 

  
Fig. 6:  Residual force and kinetic energy in the middle of span - damping factor 85 t.s-1 

The influence of the various damping factor on the iteration speed is shown in the Figure 4, Figure 
5 and Figure 6. In Table 1 fixed parameters, which were used for the calculation of simple supported 
bar are shown. External distributed loading was equally spread between all joints. 
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Tab. 1: Basic construction characteristics 

Span l = 20 [m] 

Yong’s modulus of elasticity E = 210.106 [kPa] 

External load fz = 5 [kN/m] 

Time step $t = 0,01 [s] 

Cross section area A = 5.10-4 [m2] 

 

In Table 2 z coordinates in the middle of span there are shown. Influence of various calculation 
parameters on the speed of iteration is also obvious from Table 2. For comparison results calculated by 
deformation method are shown in Table 3. 

 
Tab. 2: Z coordinate – dynamic relaxation method 

n Mix [t] Miz [t] $t [s] Ciz [t.s-1] Accuracy 
Rzi 

Count of 
iteration 

z coordinate 
[m] 

10 5000 50 0,1 0,5 0,001 22374 0,7128 

10 5000 50 0,1 10 0,001 1114 0,7128 

10 5000 50 0,1 85 0,001 173 0,7128 

10 5000 50 0,25 10 0,001 Unstable - 

10 5000 50 0,01 10 0,001 10679 0,7128 

10 500 5 0,01 10 0,001 1101 0,7128 

10 5000 5000 0,1 1000 0,001 1786 0,7128 

10 5000 50 0,1 10 0,1 559 0,7122 

10 5000 50 0,1 10 0,0001 1370 0,7128 

50 5000 50 0,1 10 0,001 Unstable - 

50 5000 50 0,05 10 0,001 2095 0,7105 

50 5000 50 0,05 40 0,001 1110 0,7105 

where: 

n    is the number of elements on the bar 

Mi  is the fictitious mass in various directions (in x and y direction the same mass was considered) 

!t  is the length of the time step 

Ciz   is the damping factor for joint i in z direction 

 

 
Tab. 3: Z coordinate – deformation method 

n Count of iteration z coordinate [m] 

10 59 0,7128 

50 17 0,7121 

50 65 0,7105 
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5. Application and conclusion 

The iteration speed and the accuracy of the method with various parameters were shown on the simple 
supported bar. For more illustrative functionality of the dynamic relaxation method the cable net was 
calculated. Figure 7 shows the shape of the construction. The construction is composed from 12 cable 
elements and 12 joints (joints 4, 5, 8 and 9 are unsupported). All cables have the same cross section 
area (A = 1,4645.10-4 m2) and the same Young’s modulus of elasticity (E = 8,2737.107 kPa). 
Unsupported length of the elements 3, 4, 8, 11 is 30,419 m, unsupported length of other elements is 
31,76 m. The distributed load was equally spread between the unsupported joints. The concentrated 
load at all unsupported joints is F = 35,56 kN. For the calculation of this example the deformation 
method and the dynamic relaxation was used. In both cases truss element was used. From Deng, Jiang 
and Kwan (2005) specification of this example was implemented. 

 

 
Fig. 7:  Schema of cable net 

After the calculation, some conclusions were set. First of all, both methods iterates to almost the 
same results (in Table 4 and Table 5 results from dynamic relaxation and deformation method are 
shown). However, the iteration speed is influenced by various factors which were assumed. 
Deformation method is faster than the dynamic relaxation one in case that the initial shape of 
construction is similar to equilibrium shape. Moreover, this behavior leads to another simple analysis 
of construction before deformation method is initiated. In opposite to the deformation method the 
dynamic relaxation one is faster in general. Almost arbitrary initial shape can be used and the dynamic 
relaxation converges to equilibrium shape. As it was mentioned, in dynamic relaxation method it is not 
necessary to compile the matrix of stiffness what leads to higher speed of iteration. In case of larger 
and more complicated construction this advantage should be more visible. On the other hand in 
dynamic relaxation the appropriate set up of the calculation parameters is difficult and nowadays the 
general approach to their set up is not known. Comparison of results in case of various calculating 
parameters is shown in Figure 8. 

 

  
Fig. 8:  Kinetic energy in joint 5 - damping factor 10 t.s-1 (left) and 75 t.s-1 
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Tab. 4: Coordinates of joint 5 – dynamic relaxation method 

Mix 
[t] 

Miy 
[t] 

Miz 
[t] 

$t 
[s] 

Ciz   
[t.s-1] 

Accuracy 
Rzi 

Count of 
iteration 

x coordinate 
[m] 

z coordinate 
[m] 

1000 1000 10 0,1 2 0,001 882 15,2804 9,5930 

1000 1000 10 0,1 10 0,001 203 15,2804 9,5930 

1000 1000 10 0,1 15 0,001 126 15,2804 9,5930 

5000 5000 50 0,1 10 0,001 937 15,2804 9,5930 

5000 5000 50 0,1 30 0,001 328 15,2804 9,5930 

5000 5000 50 0,1 75 0,001 948 15,2804 9,5930 

 
Tab. 5: Coordinates of joint 5 – deformation method 

Count of iteration x coordinate [m] z coordinate [m] 

13 15,2802 9,5917 

20 15,2804 9,5930 
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