
EIGENVIBRATION OF ROAD BRIDGES: MEASUREMENT AND
NUMERICAL ANALYSIS

J. Kruis *, M. Polák **, T. Koudelka ***, T. Plachý †.

Abstract: Experimental and numerical analysis of existing highway concrete prestressed bridges were
performed. In order to obtain good agreement between the numerical and experimental analyses, three-
dimensional finite element models of the bridges were used. The eigenfrequencies and eigenmodes were
obtained by the subspace iteration method with Gram-Schmidt orthonormalization in the reduced problem.
The eigenfrequencies and eigenmodes obtained from the numerical analysis and from the experiment were
compared and very good agreement was attained.
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1. Introduction

Highway bridges are subjected to experimental analysis of their vibration before they are put into service.
The aim of experimental analysis is to determine eigenfrequencies and eigenmodes of the bridges. In
order to perform the experiments smoothly and as much precisely as possible, it is useful to determine
the eigenfrequencies and eigenmodes by numerical analysis in advance. Sensors should be located in
antinodes because of significant displacements which can be measured more precisely than small dis-
placements near the vibration nodes, Polák et al (2005).

The bridges analysed are highway concrete prestressed bridges in Prague. They are six-span struc-
tures made from the concrete C35/45-XF2+XD1. The length of the left bridge is 560.976 m (71.999
+ 84.248 + 101.905 + 115.170 + 115.153 + 72.501) while the right bridge has the length 551.540 m
(72.000 + 83.737 + 99.952 + 112.436 + 112.246 + 71.169). Both bridges are horizontally curved with
radius 747.5 m and 753.75 m for the left and right bridge, respectively.

The cross sections of the bridges are changing along the length with respect to the quadratic parabola.
The maximum height of the cross section is 6.5 m over the piers while only 3.135 m in the span centers.
Each pier is created by four columns with a variable cross section.

2. Finite Element Model

With respect to the complicated bridge geometry, a three-dimensional finite element model was created.
The model is based on brick finite elements with eight nodes and linear approximation functions. The
three-dimensional model was used because of the curved shape of the bridge. In order to generate the
mesh as easily as possible, the bridge was modelled as a straight one and a special short computer code
was developed which bends the original mesh into the curved one. Special attention was devoted to the
bridge bearings. In order to describe the bearings correctly, local coordinate systems were defined in the
nodes of the mesh because of the movable supports.
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Tab. 1: The subspace iteration method.

definition of initial vectors V 0, k = 0

iterate k = 0, 1, 2, . . .

Ṽ k+1 = K−1MV k

Ṽ k+1 → V k+1 : V T
k+1MV k+1 = I

Ω0,k+1 = V T
k+1KV k+1

if k > 1 and Ω0,k+1 −Ω0,k < εI , break

In the finite element model, the bridge piers were replaced by a set of 588 springs. The bridge piers
were modelled separately because they are also curved and even non-prismatic. Each pier was described
by its three-dimensional model and all neccessary stiffnesses were obtained. The bridge stiffeners near
the bridge supports were also modelled by spring elements.

The mesh contains 51 642 nodes, 39 750 finite brick elements, 588 bar elements representing the
bridge piers and stiffeners, 154 926 unknowns (degrees of freedom). The equation of motion of un-
damped free vibration has the form

Md̈ + Kd = 0 , (1)

where M is the mass matrix, K is the stiffness matrix, d̈ is the vector of nodal accelerations and d is the
vector of nodal displacements. The eigenvalue problem is described by the equation

(K − ω2
0M)v = 0 , (2)

where v is the eigenvector and ω0 is the natural circular frequency. The eigenfrequencies and eigenvec-
tors were computed by the subspace iteration method which is a generalization of the inverse iteration
method. Instead of one vector used in the inverse iteration, the subspace method deals with several vec-
tors simultaneously located in the modal matrix V . Columns of the modal matrix V are orthonormalized
in every iteration step and approximations of the eigenvalues are computed in the form

Ω2
0 = V TKV . (3)

The orthonormalization is based on the Gram-Schmidt method. The subspace iteration is summarized
in table 1. More details about the method can be found in references Hughes (1987) and Bittnar and
Šejnoha (1996).

The system of linear algebraic equations is solved by a sparse direct solver based on the modified
minimum degree algorithm which can be found e.g. in reference Kruis (2006). The stiffness matrix is
stored in a symmetric compressed row storage scheme and 5,386,635 matrix entries are stored before
factorization while after it there are 108,925,929 matrix entries due to fill-in phenomenon. The sparse
direct solver was used because the classical LDLT factorization based on the skyline storage scheme
leads to unacceptable memory requirement. The symbolic QG factorization takes 1.330 s and the real
factorization takes 187.350 s.

3. Experimental Modal Analysis

The experimental modal analysis was performed for both highway bridges. The scheme and the proce-
dure of the modal analysis were the same for both bridges. The electrodynamic exciter TIRAVIB 5140
was used for excitation. The position of the exciter was determined based on the calculated eigenmodes
to be able to excite basic natural modes of the bridge, it was placed in one third of the 4th span on
the left side of the bridge cross section. The driving force was measured using three force transducers
S35 LUKAS located between the exciter and the bridge. The force transducers were connected to one

776 Engineering Mechanics 2012, #297



channel to measure the total driving force. The response of the bridge was measured by six acceleration
transducers B12/200 Hottinger Baldwin Messtechnik (HBM). The transducers were connected to the
multianalyzer DEWETRON 5000.

The response measurement was done only from the 3rd to the 6th span of the bridge because of the
character of the calculated eigenmodes which have the amplitudes of the mode shapes much higher in
the spans No. 3, 4 and 5 than in the first two spans. The lengths of the 3rd, 4th and 5th measured spans
of the bridge were divided into ten equal parts - 10 cross sections and the length of the 6th span was
divided in four parts - 4 cross sections. The response was measured in five points in each cross section
on the upper road surface. The point positions were determined based on the finite element model and
they corresponded to the positions of some element nodes of the finite element model. The total number
of measured cross sections was 35 and the total number of measured points was 175 on each bridge. The
transducers were mounted on five steel weights, which were put to all points of one cross section at once,
thus the response was measured in all points of the cross section simultaneously. The vibration of the
bridge was measured in the vertical direction in all points in the first part of the experiment and in the
horizontal direction in the second part.

The reference acceleration transducer B12/200 HBM was added to the basic measurement system
to have the possibility to use the second measurement and the evaluation technique Ambient Vibration
Testing (AVT). The reference transducer was placed near the exciter. The temperature was measured
during the experiments with respect to the methodology published in reference Polák and Plachý (2010).

The time data records of the response were saved during the measurement and evaluated in off line
mode on the control computer. The Frequency Response Function (FRF) was evaluated for each point
of measurement

HrS(if) =
ẅr(if)

Fs(if)
, (4)

where i is the imaginary unit, wr(if) is the measured acceleration in the point r in frequency domain,
which was induced by excitation force Fs(if) acting in the point S. The values of the Frequency Re-
sponse Functions HrS(if) were determined as an average of the 8 measurements with 75% overlap of
the windows. The length of each signal window in time domain was 64 s, the frequency range of the
window was set to 10 Hz. According to the fact that the excitation force could be affected by additional
dynamic forces caused e.g. by wind during the experiment and these forces could not be measured, the
Operating Deflection Shapes Frequency Response Functions (ODS FRF) were evaluated. The function
ODS FRF is a complex function, which can be expressed by the real and the imaginary part or by mag-
nitude and phase functions. The magnitude function is expressed just as a frequency spectrum of the
measured response but the phase function is a phase of the measured response related to the phase mea-
sured in the reference point S. The evaluation of the natural frequencies and modes of vibration of the
bridges were done in the software MEScopeVES of the company Vibrant Technology, Inc.

4. Results

Because the finite element mesh was obtained from a mesh of virtual straight bridge by bending, the
numerical analysis was performed on both meshes. The reason is to show the influence of apposite mesh
on dynamic behaviour.

The relative difference between the calculated and measured eigenfrequencies is given in the code
ČSN 73 6209 in the form

∆(j) =
f(j)cal − f(j)obs

f(j)cal
100(%) , (5)

where f(j)cal denotes the j-th calculated eigenfrequency and f(j)obs denotes the j-th observed (measured)
eigenfrequency. The permissible range for the relative difference has the form

r = ±(14 +
f(j)cal

f(min)cal
) ≤ ±25(%) . (6)
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Tab. 2: Measured and computed eigenfrequencies and circular eigenfrequencies.
j ω0,i (s−1) f(j)cal (Hz) f(j)obs (Hz) ∆(j) (%) r(%)

straight curved straight curved measured
1 5.862073 5.211826 0.932978 0.829487 0.78 5.96 ±14.7
2 6.548391 6.452192 1.042208 1.026898 0.88 14.3 ±14.9
3 6.975418 6.941419 1.110172 1.104761 1.05 4.95 ±15.0
4 7.251255 7.144612 1.154073 1.137100 1.23 -8.17 -15;+10
5 8.066984 7.852371 1.283900 1.249743 1.30 -4.02 ±15.1
6 8.614414 9.555517 1.371026 1.520807 ???? ???? ????
7 9.976354 9.828060 1.587786 1.564184 1.50 4.10 ±15.4
8 10.960545 10.948090 1.744424 1.742442 ???? ???? ????
9 12.502974 12.334055 1.989910 1.963025 1.80 8.30 ±15.7

10 14.295015 14.079335 2.275122 2.240795 ???? ???? ????

Table 2 summaries eigenfrequencies obtained from the numerical analysis and measured on existing
structure. The relative differences and permissible ranges are also included. Question marks indicate
values which were not obtained with required reliability.

First ten calculated eigenmodes are depicted in figures 1–10. The eigenmodes of virtual straight
bridge are in the left hand side of figures while the eigenmodes of the real curved bridge are in the right
hand side.

Fig. 1: 1st eigenmode.

The eight natural frequencies and natural mode shapes were evaluated during an experimental modal
analysis on both bridges in the frequency range from 0.5 to 2.5 Hz and the natural torsional mode with
the corresponding natural frequency 4.80 Hz for the left bridge and 4.74 Hz for the right bridge. The
evaluated natural modes are shown in figures 11–18.
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Fig. 2: 2nd eigenmode.

Fig. 3: 3rd eigenmode.
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Fig. 4: 4th eigenmode.

Fig. 5: 5th eigenmode.
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Fig. 6: 6th eigenmode.

Fig. 7: 7th eigenmode.
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Fig. 8: 8th eigenmode.

Fig. 9: 9th eigenmode.
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Fig. 10: 10th eigenmode.

Fig. 11: 1st eigenmode.
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Fig. 12: 2nd eigenmode.

Fig. 13: 3rd eigenmode.

5. Conclusions

The measured eigenfrequencies and eigenmodes were compared with the eigenfrequencies and eigen-
modes obtained from numerical analysis based on the finite element three-dimensional model because
of the curved shape of the bridges. All compared eigenfrequencies satisfy conditions given in the code
ČSN 73 6209. The experimentally obtained eigenmodes contain the same number of vibration nodes
and lines as the numerically obtained eigenmodes. Moreover, the vibration lines are located in the same
bays of the bridges.
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Fig. 14: 4th eigenmode.

Fig. 15: 5th eigenmode.
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Fig. 16: 7th eigenmode.

Fig. 17: 9th eigenmode.
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Fig. 18: 10th eigenmode.
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