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Abstract:  This paper demonstrates the application of Genetic Algorithms to design optimal lightweight 
Cable-Truss structures, which are structures composed by bars and prestressed cables and offer a high 
potential in robotics. The optimal lightweight structure shape is determined through a discrete topology 
optimization process which starts from a ground grid of nodes and interconnect them using cables or 
bars in order to obtain optimal results. The optimal solution is considered to have the lower mass and 
highest stiffness, such relation is expressed in the parameter stiffness-to-mass ratio. The objective 
function of the optimization problem evaluates the bending stiffness and the mass of the feasible solutions 
searching for the maximum stiffness-to-mass ratio. Symmetric structural response is desired once that in 
movable machines the majority of the structures are moving parts in which forces can assume different 
directions during working cycle, as a result the algorithm must find solutions with are symmetric in the 
axis perpendicular to the loading direction. Simulations are also presented showing comparisons 
between Cable-Truss and Truss structures under the same boundary conditions, population and 
iterations. Structural static response is computed using nonlinear finite element iterative procedure. 
Examples with optimized modular layout of a 2D robotic arm are shown, which presents improvement of 
Cable-Truss structures in comparison with Truss structures in all cases that have been simulated.  

Keywords:  Cable-Truss structures, Genetic Algorithms, Discrete Topology Optimization, lightweight 
design. 

1. Introduction 

Lightweight structures research is based not only in material science but also in structural mechanics, 
processing and design. Is important noting that the scientific aim is to develop knowledge for the 
specific phenomena occurring in these areas and in the interface between them, in order to achieve 
increased performance for a wide range of structural applications (LsAA,2010). In addition, the main 
lightweight structures include tensile/tension structures, frame supported, air supported, air inflated, 
cable net, cable-and-strut, geodesic domes, and grid shells. In lightweight designing, different 
structural elements are used, which can be optimized, combined or substituted using different 
methods. However, assigning a single all-encompassing definition for all applications is an extremely 
complex task and consequently the meaning of the term lightweight structure varies accordingly to 
application and field of research. In the structural field, lightweight structures can be defined as those 
which shape is determined through an optimization process to efficiently carry the loads from a critical 
loading case regardless of the type of material employed (LsAA, 2010).  

In the research of lightweight structures, trusses have attracted tremendous interest due to their 
extensive application in the contracture of infrastructures and space structures. Research works have 
focused on material characteristics, truss joint design, processing and construction of structural 
components. In recent years, influence of cables in such structures has also been investigated (Liao, 
2009).  

The term cable-truss is often taken to describe a structural member consisting of bars and 
prestressed cables. Cable elements can only withstand tension forces and are used not only to maintain 
stability and strength of truss system but also to decrease the structure weight, since the weight density 
of truss members is usually much higher than in cable elements (Liao, 2009). Cable elements are in 
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essence non-linear elements which undergo large displacements, in order to take this feature into 
account nonlinear finite element analysis is performed in order to compute static structural response of 
cable trusses. 

Lightweight design of cable-trusses aims to obtain optimal mass reduction with minimal losses in 
stiffness, therefore structural optimization is essential. Such task can be divided into sizing, shape and 
topology optimization, among these, the later yields more material savings and greater complexity (Su, 
2009).  

 Discrete topology optimization approaches are typically based on Evolutionary Algorithms (EAs), 
which are adaptive methods used for stochastic search and optimization (Hajela, 1995). Among 
several EAs, Genetic Algorithms (GAs) have been widely used in discrete topology optimization 
(Rozvany, 2009, Hajela, 1995, Balling, 2006), they consist of an adaptive heuristic search algorithms 
based on the principles of natural biological evolution. As such, they represent an intelligent 
exploitation of a random search used to solve optimization problems. 

 The objective of this work is to provide a topology optimization method for cable-truss structures. 
Differently than common approaches for discrete topology optimization, the proposed method decides 
not only the interconnection between nodes, but also if this interconnection is going to be performed 
by bar or cable. For that, ground structure approach is used, which consists of using a fix grid of nodes 
and explore the combinations of interconnection between nodes using cable and bar elements.  

 In addition, genetic algorithm is used for searching for the best solution and nonlinear finite 
element procedure is applied for computing static structural response. Stiffness-to-mass ratio is 
adopted as optimization criteria since it relates the stiffness performance in a determined direction and 
mass, which are both aimed when designing lightweight structures.  

Furthermore, differently than previous researches, symmetric structural static response is aimed 
once the main target is to use cable-trusses for designing lightweight movable machines. Such 
application differs from civil engineering as forces can assume different directions during working 
cycle. This behavior demands that structural stiffness cannot rely only in cable elements since changes 
in force direction can lead to their compression. 

Examples with optimal layout of a 2D cantilever beam are presented. The simulations aim to 
compare the stiffness-to-mass ratio of cable-trusses and trusses for different slenderness ratios. The 
obtained results indicate that Cable-Trusses reached improvement in all cases. 

2. Cable-truss Structures 

Cable-truss structures can be described as a system of straight bars and cables joined at their ends from 
a rigid framework. Similarly to trusses the objective is to transfer applied loads to the supports in the 
form of axial forces. Although trusses and cable-trusses are actually three-dimensional structures, most 
can be reduced to planar cases, such approximation is adopted in this work since it reduces 
computational cost and also brings a deeper insight of the structure dependences.  

 

Fig. 1: Cable-Truss Structure. 
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As for trusses, planar cable-trusses idealization is subject to three main assumptions: (1) all 
external forces are applied at joints; (2) joints are considered frictionless hinges; (3) each element is 
only subjected to axial stress, which are constant along its length.  

Planar cable-truss structures having simple configurations and fewer members can be solved 
analytically, however for complex cable-truss systems numerical procedures are needed. Structural 
static response is usually computed by nonlinear finite element iterative procedures, where the 
numerical model is based on the characteristics of structural members, which can be simulated as bar 
element (compression-tension) or cable element (tension-only). The formulation of such elements is 
presented along the following lines. 

The stiffness of a bar element, shown in Figure 2, is given by!!!!!!!!, where !! is the modulus 
of elasticity, !!is the cross-sectional area and !! is the length. This stiffness is projected into two-
dimensional space composing a 4x4 element matrix. Considering that the material is linearly elastic 
and loads are applied at nodes, the elastic stiffness matrix,!!!!!!, for one node of the bar element can 
be written as: 

!!!!!! ! !
!!!!
!!

!! !"
!" !! ! (1) 

where, ! and!! are direction cosine values of the angles between local axis, !, and global axes, ! and 
!, as depicted in Figure 2a. This way, there is no need of coordinates transformation.  

  

(a) (b) 
Fig. 2: Bar and Cable Elements 

  Note that, though, cables exhibit geometrically nonlinear behavior which demands nonlinear 
analysis as strains are small but displacements are large as a reason of high flexibility. Moreover, 
cables cannot resist shear, axial pressure forces or bending moments (Nuholgu, 2010, Karoumi, 1999). 
Therefore, structural analysis of systems having cable elements is relatively complex since linear 
analysis, where elastic deformations and displacements are assumed to be small, is not often 
applicable and calculations divergence occurs rather frequently (Nuholgu, 2010).  

 If the material is linearly elastic material and forces are applied just in nodes, the stiffness matrix 
for only one node of planar cable element,!!!!!!, can be written as the sum of its elastic and 
geometrical stiffness matrices, !!!!!!and!!!!!!, respectively. In order to avoid coordinate 
transformations the stiffness matrix can also be expressed in terms of direction cosines between local 
and global axes as shown in Eq.2. 

!!!!!! ! ! !!!!!! ! ! !!!!!! ! !
!!!!
!!"

!! !"
!" !! ! !

!
!!

!! ! !!! !!"
!!" !! !!!!

! (2) 

where !! is the cable elasticity modulus, !!!is the cable cross-sectional area, !!" is the initial length of 
the element and !! is the current length of the cable element. Note that, ! relates to the applied 
tightening force usually applied to the system in order to increase cable rigidity. Sag effect in cables is 
taken into account by considering null tension on the element once it is submitted to compression. 

 The global stiffness matrix,! !! , of the cable-truss structure is then assembled by combining 
cable and bar elements for a determined topology, as defined in Eq.3. 
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!! ! ! !!!!!!!
!!! , (3) 

where !!!!!! is the stiffness matrix of bar or cable element and ! is total number of elements. After the 
assembly of global stiffness matrix and inclusion of support conditions the global set of equilibrium 
equations is formulated as: 

!! ! ! ! !! ! ! !! !! ! ! ! (4) 

where !  is the displacement vector, !!  is the external imposed loads, and !!  is the vector of 
initial nodal forces, which is computed based on the tightening forces applied to cable elements. It is 
important noting that the vector of initial nodal forces is design-dependent through the change of 
element length, positioning and initial strain applied to each element.  

The solution of the nonlinear equations is not trivial because the stiffness of cable elements can be 
affected by its displacement. Thus, algorithms are needed to compute static structural response of the 
cable-truss structure. The most commonly used method is the so called Newton-Raphson method, 
which corresponds to an iterative procedure that uses the estimation of the structural response from 
previous steps, requiring several iterations before the system attains equilibrium. At the beginning of 
!! ! !! steps the imbalance force (residual force), !, can be written as: 

! ! !!! ! ! !! ! !!! ! ! ! !! (5) 

If the imbalance force at the beginning of the i-th step,! ! ! ! , is expanded in a low order 
Taylor series, hence: 

! ! ! ! ! ! ! !!! ! ! !!!
!! ! ! !!!! ! , 

  ! ! ! ! !!! ! ! !! ! !!! ! ! ! , 
(6) 

where ! !!! is the displacement vector in the (i-1)th step. Setting ! ! ! ! ! it is possible to find 
the increment in displacement created by the imbalance force by solving the system: 

! ! ! !! ! !! ! !!! !
!!

!! ! !!! ! ! ! . (7) 

Nodal displacements are then updated using increments obtained in equation (7): 

! ! ! ! !!! ! ! ! . (8) 

The above steps are repeated until the ratio of magnitude of the displacement increment vector to 
the previous displacement is met, which corresponds to the convergence criteria usually adopted. For 
further details of Newton-Raphson procedures see (Bathe, 1996).  

3. Discrete Topology Optimization 

The proposed discrete topology optimization method searches for the best interconnectivity between 
nodes, and also for the elements in each interconnection. For that, ground structure approach is used, 
in which all possible interconnections are performed based on an initial grid of nodes, as illustrated in 
Fig.3.  

Note that, increasing the amount of nodes in the ground structure sharply increases the number of 
feasible solutions since more structural elements are used for forming the cable-truss system. 
Moreover, the nodes from ground structure can be deactivated when they are not used, however, these 
nodes cannot be moved during the optimization process.  
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Fig. 3: Planar Gournd Structure 

Since the main target in the lightweight design is to obtain optimal mass reduction with minimal 
losses in stiffness, topology optimization has been adopted in this work. Such method not only 
presents benefits regarding material saving, but also can be used as a first step in a multi-level 
optimization process (Carlos, 2000).  

To achieve more complex structures, modular design can be used decrease design parameters 
when modeling cable-trusses. Such approach is commonly used in truss design, e.g., crane structures 
as illustrated in Fig.4a. Modularity in design consists in patterning basic modules to form more 
complex structures, as shown in Fig.4b. It can be also noticed that building time and cost is reduced by 
using a limited number of cross-sections in its structural members. 

  
(a) (b) 

Fig. 4: Modular Design in Truss(a) and Cable-truss structures(b). 

In order to attend lightweight requirements, the optimization process criteria should take into 
account the stiffness of the structure as well as its mass. Stiffness analysis can be performed through 
the definition of the overall system stiffness using the Cartesian stiffness matrix (Carbone, 2010). One 
of the possible uses of this approach consists in: a) selecting a specific node which characterize the 
structural behavior, b) loading the structure, and c) evaluating the displacements on the selected node 
to determine in which direction the structure presents higher stiffness. By this approach, the structural 
stiffness-to-mass ratio can be written as follows: 

!"# !
!!"
!!"

!!
!!! (9) 

where !!" !is the force applied at node ! in the direction!!, !!" is the displacement of node ! in the 
direction!!, and !! is the total mass of the structure. Such index for stiffness performance has the 
advantage of having full physical meaning for single loading cases. Nonetheless, it does not take into 
consideration structural stiffness in different directions, which may lead to structures with reduced 
isometric stiffness properties. 
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Fig. 5: Kinematically stable cable-truss structure 

 In addition, during the stochastic search of the optimal topology several kinematically instable or 
structurally invalid structures appear (Su 2009). Such structures, exemplified in Fig.5, should be 
filtered in order to increase convergence and decrease computational cost. Consequently, the filter 
presented in Eq.10, evaluates the degrees of freedom (dof) of the structure, which must be lesser or 
equal to 0. 

!"#! ! !!! !!! ! !!! 
(10) 

where ! is the number of nodes being actively used in the structure, !! is the number of members, 
and !! is the number of degrees of freedom. Note that, the subscript ! implies that the aforementioned 
equation refers to each structure being evaluated during the stochastic search instead of the ground 
structure. In this sense, the optimization problem can be formulated as: 

!"# ! !"#! ! !!"#$$%&!! ! !" !!"##!!"#$%!
!! !!

!"#! ! !!!!!"#$%&'"(&)!!"#$%&%"'!!"#$%&'(#%$!
 . (11) 

4. Genetic Algorithms 

Genetic Algorithms (GAs) are adaptive methods which can be used for searching and optimization 
problems, performing a stochastic search and optimization. Compared to traditional optimization 
methods, such as calculus-based and enumerative strategies, GAs are robust, global, and may be 
applied generally without recourse to domain-specific heuristics. Although performance is affected by 
these heuristics, EAs operate on a population of potential solutions, applying the principle of survival 
of the fittest to produce successively better approximations to a solution (Mitchell, 1996, Han, 2002).  

Individuals in a population compete for resources and mates. Those individuals most successful in 
each competition, e.g., the structures with higher stiffness to mass ratio, will produce more offspring 
than those that performed poorly. Genes from fittest individuals propagate throughout the population 
so that two good parents will sometimes produce offspring that are better than either parent. As a 
consequence, each successive generation will become more suited to their environment. To sum up, it 
can be said that GAs aim to use selective breeding of the solutions to produce offspring better than the 
parents by combining information from the chromosomes (Mitchell, 1996). In addition, GAs uses 
highly customizable genetic operators; selection, cross over and mutation, to perform the search for 
the optimal solution. 

Traditional binary-vector encoding is commonly used for discrete topology optimization of trusses 
(Hajela, 1995, Balling, 2006). In order to encode cable-truss structures element properties have been 
encoded into integer numbers (0, 1 and 2), where 0 represents disconnection between two nodes, 1 and 
2 relates to bar and cable element, accordingly.The GA with Nonlinear finite element solver used in 
this work was programmed in MATLAB. The logic of the program flows as shown in Fig.6 and in the 
procedure below: 

[1.Start]: User provides number of nodes used, slenderness ratio of the structure, applied loads, and 
geometrical information about bars and cables. 

[2.Generation of Ground Structure]: Symmetric ground structure is build using nodal matrix 
provided by user. 

[3.Initial population]: Generate random population of n chromosomes (suitable solutions for the 
problem). 
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[4.Stability and Validity Checking]: Eq.10 is used to determine kinematically instable structures, 
which are repaired and reinserted into the population. The repair operation consists in stochastically 
adding bars to the original structure until stability is achieved. 
[5.Decoding] : Population is decoded into bars, cables and disconnections. 

[6.Nonlinear Structural Analysis]: Newton-Raphson procedure, see section 2, is used for computing 
static structural response and stiffness-to-mass ratio for each individual of the population.  

[7.Evaluation] If the best solution of the population is better than the previous overall solution found 
by the algorithm, then the overall solution is updated. Otherwise, the worst individual of the current 
population is substitute by previous best solution. 

[8.Test] If the end condition is satisfied, go to step [11]. If not, go to next step. 

[9.New population] Create a new population by repeating following steps until the new population is 
complete: 

[Selection] Select two parent chromosomes from a population according to their 
fitness (the better fitness, the bigger chance to be selected). 

[Crossover] With a crossover probability of 0.9, cross over the parents to form a new 
offspring (children).  

[Mutation] With a mutation probability of 0.1, mutate new offspring at each locus 
(position in chromosome). 

[10.Loop] Return to step [4]. 

[11.End] Best structure is stored. 

 
Fig. 6: GA applied to topology optimization of Cable-Trusses 
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5. Study Case - Cantilever Optimization 

The design of optimal planar cable-trusses comprises the choice of several design parameters, such as, 
the ratio between cable and bar cross section areas, pre-stress, slenderness ratio (sl) of the structure, 
materials, among others. Discrete topology optimization was performed for a robotic arm which is 
approximated by a horizontal cantilever beam, an additional constraint was used for maintaining a 
minimum set of nodes which represents the structure. After obtaining the optimal topology, the 
structure is analyzed using different number of modules increasing the slenderness ratio. In all 
configuration the structure is submitted to a punctual load of 500N in the mid of the end of the last 
column of nodes, as shown in Fig.7. 

 
Fig. 7: Study case boundary conditions 

The main input parameters for the algorithm are the cross section areas bars and cables which are 
!""!!!! and !"!!!! respectively, the strain on cables have been considered as 5.2e0-5, the 
population for simulations has been selected as 80 and the number of iterations as 5000, each 
simulation has been repeated 3 times and best results were selected for each structure. 

The simulations compares the results in terms of stiffness-to-mass ratio for Cable-Truss and Truss 
structures under the same environment and boundary conditions, the target is to analyze which 
structure provides higher stiffness to mass ratio. Using a ground structure with fifteen nodes, as shown 
in Fig.8a., the method proposed searched for maximum stiffness-to-mass ratio. Same environment and 
boundary conditions are used for optimizing truss and cable-truss structures. Results of the topology 
optimization are shown in Fig.8.  

   
(a) (b) (c) 

Fig.8: Optimal Structures obtained by discrete topology optimization 
 

Structures obtained during topology optimization were used as initial modules to build more 
complex structures. It is important noting that by increasing the number of modules the slenderness 
ratio of the structure increases in the same proportion. Structures containing from 1 to 10 modules, 
where Fig. 9 depicts structures using 10 modules, were analyzed and results are shown in table 1. 

(a) 

 

(b) 

 

Fig. 9: a)  Truss Structure using10 Modules b) Cable-truss Structure using10 Modules 
 

!!!"##!

!!!$%&'"##! F  

  

    
  
  

Minimum set of Nodes 
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Tab. 1: Stiffness to mass ratio of Optimized Structures. 
 Truss (S-t-m) Cable truss (S-t-m) 

Sl=1 44996.79966 48149.45852 
Sl=2 4835.850861 5193.808638 
Sl=3 1019.162564 1103.527095 
Sl=4 322.5478356 351.0791844 
Sl=5 130.7810331 142.8265765 
Sl=6 62.38712922 68.28822800 
Sl=7 33.35000572 36.56401106 
Sl=8 19.38779245 21.28215362 
Sl=9 12.01891870 13.20573900 

Sl=10 7.838589176 8.619098703 

As it can be seen on the simulation results table, Cable-Truss structures presented higher stiffness-
to-mass ratio in all cases, presenting average improvement 8.9% when compared to optimized Truss 
structures, as shown in Fig.10. 

 

Fig. 10: Improvement in S-t-m of Cable-Trusses in comparison with Trusses 

Furthermore, the length of the vector which encodes individuals increases quickly with the growth 
problems scale, leading the GAs to have troubles in convergence. Such problem is potentialized when 
analyzing cable-trusses since: a) the number of possible elements to interconnect to nodes increases 
the number of feasible solutions, b) cables cannot resist compression leading thus to a sharp increase 
in the number of kinematically instable structures during the stochastic search, and c) the evaluation of 
Eq.4 requires the use of iterative solution, which is computationally costly since inversion of the 
stiffness matrix must be performed several times. 

6. Conclusions 

In this article, a methodology for topology optimization of cable-trusses was presented. By combining 
Genetic Algorithm and Nonlinear Finite Element Method optimized cable-trusses were found. Such 
structures where obtained for an initial module, which was then patterned in order to form more 
complex structures.  

Comparisons between optimized symmetric truss and cable-truss structures were performed for 
different number of modules. Results indicated that, in all cases, the stiffness-to-mass ratio of cable-
trusses was higher than those obtained for trusses. Moreover, optimized symmetric cable-trusses have 
shown an average improvement of 8.9% when compared to optimized symmetric truss structures. 

 For further maximization of the stiffness-to-mass ratio complementary analysis are recommended. 
These include, for instance, optimization of cable-trusses considering the use of different modules as 
the slenderness ratio increases. As result, such study shall bring higher stiffness-to-mass ratio since the 
topology of the initial module may change as more modules are being used. 

Finotto V. C., Valášek M. 253



 

Acknowledgements 

Our thanks to the research project GACR 101/08/H068, Research of new principle of mechanical and 
biomechanical systems with intelligent behavior, and to the European Brazilian Network of Academic 
Exchange (EUBRANEX) for funding this research. 

References  
Balling, R. J., Briggs, R. R., Gillman, K. (2006) Multiple optimum size/shape/topology designs for skeletal 

structures using a genetic algorithm, Journal of Structural Engineering, vol. 132, pp. 1158-1165. 
Bathe K. J. (1996) Finite Element Procedures, Prentice Hall. 
Carbone G., Ceccarelli M. (2010) Comparison if indices for stiffness performance evaluation., Frontiers of 

Mechanical Engineering in China, Volume 5, Number 3, pp.270-278. 
Carlos A. et al. (2000) Multiobjective Optimization of Trusses using Genetic Algorithms, Computers and 

Structures, Vol. 75 , pp. 647-660. 
Hajela, P., Lee, E. (1995) Genetic algorithms in truss topological optimization, International Journal of Solids 

and Structures, vol. 32, pp. 3341-3357. 
Han, K., Kim, J. (2002) Quantum-Inspired Evolutionary Algorithm for a Class of Combinatorial Optimization. 

IEEE Transactions on evolutionary computation, Vol. 6, No. 6, pp. 20-40. 
Karoumi R. (1999) Some modelling aspects in the nonlinear finite element analysis of cable supported bridges, 

Computers and Structures 71, pp.397-412. 
Leonard J. W. (1988) Tension structures. New York: McGraw-Hill. 
Liao, L., Baisong, Du. (2009)  Finite Element Analysis of Composite Truss Structures Containing Pre-tensioned 

Cables, The Seventeenth Annual International Conference on Composites (ICCE-17), pp. 56-58. 
LsAA, (2010) Lightweight Structures Association of Australasia, Lightweight structures Definition. Available at 

http://www.lsaa.org/, June, 2010. 
Mitchell, D. M. (1996) An Introduction to Genetic Algorithms. MIT Press. 
Rajan, S. D. (1995) Sizing, shape, and topology design optimization of trusses using genetic algorithm, Journal 

of Structural Engineering, vol. 121, pp. 1480-1487. 
Rozvany, G. I.(2001) Aims, scope, methods, history and unified terminology of computer-aided topology 

optimization in structural mechanics, Structural and Multidisciplinary Optimization, vol. 21, pp 90-108. 
Rozvany, G. I. N. (2009) A critical review of established methods of structural topology optimization, Structural 

and Multidisciplinary Optimization vol. 37, pp. 217-237. 
Su, R., Gui, L., Fan, Z. (2009) Topology and Sizing Optimization of Truss Structures Using Adaptive Genetic 

algorithm with Node Matrix Encoding, Fifth International Conference on Natural computation, IEEE 
Computer Society. pp. 485–491. 

 

254 Engineering Mechanics 2012, #271


