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Abstract: The paper deals with homogenization and strength estimation of mortars containing crushed
bricks or other clay products. These mortars, known as cocciopesto, were used mainly during the Byzan-
tine period and by Romans. Cocciopesto exhibit quite extraordinary mechanical properties due to formation
of C-S-H gel coating on the interface between lime matrix and crushed clay products. Based on literature
study, it seems that no one has ever tried to estimate the properties of cocciopesto mortars using microme-
chanical modeling. The micromechanical approach and Mori-Tanaka homogenization technique provided
an explanation for the characteristic behavior of these mortars, but they had to be modified for homog-
enization of coated particles. Mortar strength was estimated from magnitudes of the quadratic average
of deviatoric strain in individual phases. The calculations confirmed the important role of the C-S-H gel
coating on the mortar strength and stiffness. Despite the above mentioned simplifications and a few un-
certainties, the model seems to be able to correctly predict the trends and serve for an optimization of the
mortar composition towards desired properties.
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1. Introduction

The present conservation practice uses air lime or hydraulic lime mortars, because these are compatible
with the original materials. The use of air lime presents problems with slow setting, inability to harden
under water, lack of durability and poor mechanical strength. Therefore, the hydraulic lime-pozzolan
mortars were widely used in the past and are still used nowadays for repairs. These mortars are of a
higher porosity and lower strength than cement-based mortars, but they exhibit better durability.

Phoenicians were probably the first ones who added crushed clay products, such as burnt bricks, tiles
or pieces of pottery, to the lime mortar in order to increase its durability and strength. Romans used
this type of mortar in areas where other natural pozzolans were not available and called such material
cocciopesto. The structures, mainly from the Byzantine period, have also very thick joints, often compa-
rable to the size of bricks. Together with the enhanced mechanical properties of the cocciopesto mortar,
the use of the thick joints probably results in the increased resistance to earthquake loading, since the
non-linear behavior of the mortar allows for a better energy dissipation (Baronio et al., 1997).

By a closer investigation, it was found that the mortars containing crushed bricks exhibit a hydraulic
character due to formation of C-S-H gel on the lime-brick interface. It was reported in many papers,
dealing with the cocciopesto mortars, that a thin layer of the gel forms at the interface if the bricks are
made of clay and burnt at the appropriate firing temperature (which is about 600-900◦C (Maropoulou
et al., 1995)). Since this component is responsible for some extraordinary properties of Portland cement
concrete, it is conjectured that also the enhanced mechanical properties of the lime-crushed brick mortars
can be attributed to the relatively high strength and stiffness of the C-S-H gel coating. The addition of
crushed bricks should ensure the mortar hydraulicity, and therefore improve mechanical properties of the
mortar, without the need for modern artificial substances or industrial by-products such as metakaolin or
fly ash.
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The goal of this work is to investigate the influence of the C-S-H gel coating on the mortar behav-
ior from the micromechanical point of view and provide a tool for the estimation mechanical properties
based on mortar composition. Two works, (Pichler and Hellmich, 2011) and (Šmilauer et al., 2011), pro-
vided an inspiration for the development of micromechanical models. These works deal with composite
materials, composed of a matrix, voids and aggregates and exploit the Mori-Tanaka method (Benveniste,
1987; Mori and K., 1973) to estimate the effective stiffness and strength of the composite. It is assumed
that only the deviatoric stress is responsible for a failure of the material, therefore the quadratic average
of the deviatoric stress in the lime matrix was chosen as an adequate indicator for the determination of
mortar strength. Even though there are a few simplifications in these models, the results in Pichler and
Hellmich (2011) and Šmilauer et al. (2011) quite well correspond to the available experimental data and
therefore they should be applicable to the mortars with crushed bricks as well.

2. Stiffness Homogenization

The term inhomogeneity is understood as an inclusion of a material embedded in a matrix, having differ-
ent material properties from those of the matrix. If a sample of an inhomogeneous material is subjected
to the external load E, then the average strain in individual phases can be calculated as E(r) = A(r) : E,
where A(r) represents a strain concentration factor for a phase r. The superscript r attains the values
from 1 (possibly even 0 if the matrix is included) to the number of phases n. The strain concentration
factor can be calculated as follows:

A
(r)
dil = [I + S : M(0) : (L(r) − L(0))]−1 where r = 1, ..., n (1)

where I represents the fourth order unity tensor with components Iijkl = 1/2(δikδjl + δilδjk), where δij
is a Kronecker delta defined as δij = 1 for i = j, and δij = 0 otherwise; S is so called Eshelby tensor
and its components for various inclusion shapes can be found, e.g., in Mura (1987), M(0) is a compliance
tensor representing the matrix, the L(r) and L(0) are stiffness tensors, representing the individual phases
and the matrix, respectively.

The subscript dil in Eq. (1) stands for a ”dilute distribution”, because Eq. (1) is valid under the
assumption that the inhomogeneity is embedded in an infinite matrix. The assumption of dilutely dis-
tributed non-interacting inhomogeneities is a starting point for a refinement of the model accounting for
a mutual interaction of inhomogeneities, such as the Mori-Tanaka scheme introduced next.

2.1. Mori-Tanaka Scheme

The Mori-Tanaka model, (Benveniste, 1987; Mori and K., 1973), formally equals to that of a dilute
distribution. However, the strain in individual inhomogeneities is not directly dependent on the exter-
nally applied load (macroscopic strain), but rather on a strain in the matrix, which is approximated by a
constant field E(0):

E(r) = A
(r)
dil : E(0) (2)

The relationship between the macroscopic strain and strain in the matrix can be found using a simple
reasoning:

E = c(0)E(0) +
n∑

r=1

c(r)E(r) = c(0)E(0) +
n∑

r=1

c(r)A
(r)
dil : E(0) = (3)

=

(
c(0)I +

n∑

r=1

c(r)A
(r)
dil

)
: E(0)

where c, having a superscript (0) and (r), stands for a volume fraction of the matrix and inhomogeneities,
respectively. The relationship between the average matrix strain and the macroscopic strain can be de-
scribed simply as E(0) = A

(0)
MT : E, where

A
(0)
MT =

(
c(0)I +

n∑

r=1

c(r)A
(r)
dil

)−1

(4)
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is the Mori-Tanaka strain concentration factor. The strain in the individual inhomogeneities is then
provided by

E(r) = A
(r)
dil : E(0) = A

(r)
dil : A

(0)
MT : E (5)

2.2. Effective Stiffness according to M-T Scheme

The relationship between the macroscopic stress Σ and strain E can be obtained as follows:

Σ =
n∑

r=0

c(r)Σ(r) =
n∑

r=0

c(r)L(r) : E(r) =
n∑

r=0

c(r)L(r) : A(r) : E = Leff : E (6)

where Leff is the effective stiffness tensor, and in case of the Mori-Tanaka scheme it can be obtained as

Leff =

(
c(0)L(0) +

n∑

r=1

c(r)L(r) : A
(r)
dil

)
: A

(0)
MT (7)

In the special case of an isotropic matrix containing isotropic spherical inhomogeneities, the Mori-
Tanaka model yields an isotropic overall behavior, irrespective of the spatial arrangement of the phases.
The effective stiffness of such composite can be then described by scalar constants, since the Eshelby
tensor can be also decomposed into its volumetric and deviatoric part:

S = α(0) 1

3
δijδkl + α(0)

(
I − 1

3
δijδkl

)
= α(0)IV + β(0)ID (8)

where IV and ID are volumetric and deviatoric projection tensors, respectively. These tensors serve for
a decomposition of any stress or strain tensor into its volumetric and deviatoric components. The scalar
parameters α(0) and β(0) depend, in case of spherical isotropic particles, only on the matrix Poisson’s
ratio:

α(0) =
1 + ν(0)

3
(
1− ν(0)

) and β(0) =
2
(
4− 5ν(0)

)

15
(
1− ν(0)

) (9)

These parameters are also called constraint constants and because of the entire isotropy (i.e., elastic and
geometric) they can be expressed by scalar values. They relate the eigenstrains εt in individual phases to
the total strain, and the decomposition into volumetric and deviatoric strain highlights their meaning:

εkk = αεtkk and εij = βεtij (10)

Using the equations (5), (8) and knowing that the elastic stiffness tensor can be decomposed into
volumetric and deviatoric parts, L = 3KIV + 2GID, all the terms in Eq. (7) can be decompossed into
their volumetric and deviatoric parts. Since the volumetric and deviatoric components are independent
of each other, the effective bulk modulus can be, after a simple manipulation, expressed as

Keff =

c(0)K(0) +
n∑

r=1

c(r)K(r)

[
1 + α(0)

(
K(r)

K(0)
− 1

)]−1

c(0) +

n∑

r=1

c(r)

[
1 + α(0)

(
K(r)

K(0)
− 1

)]−1
(11)

and the effective shear modulus as

Geff =

c(0)G(0) +
n∑

r=1

c(r)G(r)

[
1 + β(0)

(
G(r)

G(0)
− 1

)]−1

c(0) +
n∑

r=1

c(r)

[
1 + β(0)

(
G(r)

G(0)
− 1

)]−1
(12)
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2.3. Homogenization with Coated Particles

This section is devoted to the evaluation of the constraint constants for coated particles, relating the
induced strain to the eigenstrain in individual phases, α(r) and β(r), and obtaining the effective elastic
properties. The spherical inclusion with a thin interlayer and embedded in a matrix is considered for
the evaluation. This is an enormous simplification and it is also a good model for randomly oriented
inhomogeneities, such as particles embedded in the mortar paste.

The whole procedure for a determination of the constraint constants, α(r) and β(r) was taken from
Luo and Weng (1987), where the theoretical background can be found. Motivated by Eshelby’s obser-
vations, Luo and Weng (1987) undertook a similar study to find the elastic field in the inclusion (grain)
and its coating, which is embedded in an infinitely extended matrix. They restricted their consideration
to the case of a three-phase, spherically concentric solid. The solution of Luo and Weng is based on the
equations for a general displacement field in spherical coordinates. The integration constants were found
using the continuity conditions and equilibrium of stresses on the interface of individual phases.

The superscript (g) stands for the grain (or the inner inclusion), (c) stands for the coating and the
superscript (m) is used in the quantities describing the surrounding matrix. The parameter c is defined
as c = (a/b)3 (see Fig. 1) and it has a physical meaning of the volume fraction of phases in a two-phase
composite. The hydrostatic and deviatoric transformation problems are treated separately. Each phase, a
grain, its coating and a surrounding matrix, is represented by its bulk modulus K(r) and shear modulus
G(r). The geometry is described by the radius of a grain a and radius of its coating b, as depicted in the
following figure:

Fig. 1: A three-phase composite spherically concentric solid

Volumetric Part
The constraint constant for grain α(g) is calculated as

α(g) = 3K(g)
[(

3K(c) + 4G(m)
)
− 4c

(
G(m) −G(c)

)]
/p (13)

where c = (a/b)3 and p is

p =
(
3K(g) + 4G(c)

)(
3K(c) + 4G(m)

)
− 12c

(
K(g) −K(c)

)(
G(m) −G(c)

)
(14)

The constraint constant for the coating of the grain, α(c), is obtained as

α(c) = −4cK(g)
(
G(m) −G(c)

)
/p (15)

Deviatoric Part
The deviatoric constraint constant for the grain can be found in the form

β(g) = a1 −
21

5
(
1− ν(g)

) a2 (16)

and for the coating as

β(c) = b1 −
21

5
(
1− 2ν(c)

) 1− c 5/3

1− c b2 (17)
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where the constants a1 and a2 can be calculated as
(
a1

a2

)
= R−1 (18)

and the terms b1 and b2, needed for the calculation of the deviatoric constraint constants for the coating,
can be found as 



b1
b2
b3
b4


 = E−1FK−1HR−1 (19)

The individual matrices, needed for the calculation of coefficients a1, a2 and b1, b2, can be found in the
Appendix.

Modification of Stiffness Homogenization
For the calculation of the effective moduli, the formulas (11) and (12) can be used in a slightly modified
form. Namely, the constraint constants α(0) and β(0) are substituted by the corresponding constants
α(r) and β(r), which remain α(0) and β(0) in case of uncoated particles. However, coated grains are
represented by α(g) and β(g) and their coating by α(c) and β(c).

3. Strength Estimation

The strength estimation is based on the J2 yield criterion, i.e. that only the deviatoric part of the imposed
load can cause a failure of the material. Therefore, it is necessary to calculate the deviatoric stress in
individual components, which can be afterwards compared with a critical stress. Such approach was
used by Pichler and Hellmich (2011) and it turned out to be suitable for an estimation of the compressive
strength in cementitious materials.

Due to the assumed elastic linear behavior of the RVE, all imposed work is stored at each point as an
elastic energy density, We = 1/2 σ : ε = 1/2 ε : L : ε, which can be decomposed into the volumetric
and deviatoric parts, We = 1/2 σmεV + 1/2 s : e. The quantity εV = 1/3 δ : ε represents the relative
change of volume, e is obtained as e = ε− δεV and it represents the deviatoric part of the strain tensor,
σV = 1/3 δ : σ is the mean stress and s = σ − δσV is the stress deviator.

The deviatoric part of the imposed work, WeD = 1/2 s : e = 1/(4G) s : s, is proportional to the
second invariant of the stress deviator, J2, where

J2 = 1/2 s : s (20)

and therefore WeD = J2/(2G). The quadratic average of the deviatoric stress is then ‖s‖ =
√

2 J2

3.1. Quadratic Strain Averages

The expression for the quadratic average of the deviatoric strain field over a general phase, r, can be
derived using the Hill’s lemma

〈U〉 =
1

2

〈
E(r) : L(r) : E(r)

〉
=

1

2

〈
E(r)

〉
: Leff :

〈
E(r)

〉
=

1

2
E : Leff : E (21)

which expresses the equality between the average strain energy density, 〈U〉, in the RVE by means of the
microscopic or macroscopic quantities (Gross and Seelig, 2006). From Eq. (21) the following equality
can be obtained:

E : Leff : E =
1

|Ω|

∫

Ω
ε(x) : L(x) : ε(x) dx (22)

where Ω stands for the domain of the entire RVE, opposed to Ω(r) denoting the domain of the single
inclusion (inhomogeneity). The local strain ε(x) can be then decomposed into its volumetric and devia-
toric part (responsible for the material failure):

E : Leff : E =
1

|Ω|

∫

Ω
ε(x) : [K(x)IV + 2G(x)ID] : ε(x) dx (23)
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To extract the deviatoric part, it is convenient to differentiate the entire expression (23) with respect
to G(r). The volumetric part vanishes and we obtain

E :
∂ Leff

∂ G(r)
: E =

1

|Ω|
n∑

r=0

∫

Ω(r)

2 e(r)(x) : e(r)(x) dx (24)

which can be after a simple manipulation:

1

2
E :

∂ Leff

∂ G(r)
: E =

1

|Ω|
|Ω(r)|
|Ω(r)|

n∑

r=0

∫

Ω(r)

e(r)(x) : e(r)(x) dx (25)

knowing that c(r) = |Ω(r)|/|Ω|, even more simplified:

1

2
E :

∂ Leff

∂ G(r)
: E = c(r) 1

|Ω(r)|

∫

Ω(r)

e(r)(x) : e(r)(x) dx (26)

The quadratic average of the deviatoric strain field over a general phase, r, is defined as (Pichler and
Hellmich, 2011)

‖e(r)‖ =

√
1

|Ω(r)|

∫

Ω(r)

1

2
e(r)(x) : e(r)(x) dx (27)

and using Eq. (26), it can be also expressed as

‖e(r)‖ =

√
1

4c(r)
E :

∂ Leff

∂ G(r)
: E (28)

The related quadratic average of the deviatoric stress field (see (20)) is used as an estimate for deviatoric
stress peaks (Pichler and Hellmich, 2011):

‖s(r)‖ =

√
1

|Ω(r)|

∫

Ω(r)

1

2
s(r)(x) : s(r)(x) dx = 2G(r)‖e(r)‖ (29)

Assuming the elasto-brittle behavior, the elastic response can be expected until the quadratic devi-
atoric stress averages over each of the phases remain below a critical strength (Pichler and Hellmich,
2011):

‖s(r)‖ ≤ s(r)
crit (30)

4. Homogenization of Cocciopesto Mortar

The specific feature of cocciopesto mortars is that a thin layer of C-S-H gel is formed around the crushed
brick particles and it should be taken into account in the calculation. A thickness of the C-S-H layer at
the brick interface is assumed to be about 20 µm for the calculations; the backscattered electron image
of the interface can be seen in Fig. 2, which is reproduced from Böke et al. (2006). However, the
estimation of the C-S-H gel thickness on the brick interface is one of the deficiencies in the modeling.
Another uncertainty is the elastic stiffness of the gel. There are basically two types of the gel present in
the Portland cement. As reported in literature, e.g. Selvam et al. (2009), these are low and high-density
C-S-H gel. For the calculation of the effective properties of cocciopesto mortars, values representing the
low-density C-S-H gel were considered. The nanoindentation results showed that the low-density C-S-H
phase has a mean stiffness of about 22 GPa (Constantinides and Ulm, 2004), the density of the gel in
calculation was considered as 2000 kg/m3, as suggested in Jeffrey and Hamlin (2006) and Poisson’s
ratio as 0.20.

In the calculations it is assumed that 50% of the C-S-H gel occupies the voids, 30% of the C-S-H
gel consumes a part of the lime matrix and the remaining 20% is assumed to consume a part of the brick
phase. These values are only estimated, but they do not have any significant influence on the final results.
Despite the uncertain material properties of the gel phase, the model should be capable to indicate trends.
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Fig. 2: Brick interface (I) between lime matrix (L) and brick aggregate (B), reproduced from Böke et al.
(2006)

Based on a comprehensive literature study, e.g. Maropoulou et al. (2005), the mix proportions for
the micromechanical homogenization of the cocciopesto mortar were determined as 4 mass portions of
lime matrix, 3 mass portions of crushed bricks and 5 mass portions of siliceous sand in the hardened
mortar. This composition should be similar to the historic mortars described by, for instance, Vitruvius.
A porosity of the hardened mortar is varying according to the environment and technology. For the
calculations, the porosity was considered to be 30% of the volume. The mechanical properties of the
individual components, considered in the calculations, are summarized in Tab. 1. The properties of
voids are set to be non-zero to avoid numerical complications.

Tab. 1: Properties of individual components used for calculations

density E ν tensile strength source

[kg/m3] [MPa] - [MPa] -

lime 1900 1800 0.25 0.4 Drdácký and Michoinová (2003)

siliceous sand 2600 70000 0.17 48 AZoM (2012)

clay brick 1600 2400 0.17 3.2 Hendricx et al. (2009)

voids - 10−9 10−3 - -

The summary of material properties in Tab. 1 indicates that the weakest constituent is the hardened
lime matrix, having the tensile strength approximately 0.4 MPa. This value can vary according to curing
time and technology. However, the value should not be higher than 0.7 MPa, which is still way smaller
than the tensile strength of the other components.

4.1. Results and Discussion

The C-S-H gel coating significantly stiffens the crushed brick particles and its presence results in an in-
crease of the effective mortars stiffness (see Fig. 3), even though the layer is relatively thin in comparison
with the diameter of the brick particles.
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Fig. 3: The effective stiffness of mortars containing coated / uncoated crushed brick particles

It can be clearly seen from Fig. 3 that with the addition of crushed bricks without consideration of
coating, the mortar stiffness is quite significantly reduced. However, for the mortar containing coated
crushed brick particles the mortar stiffness reduction or increase is strongly dependent on the size of
the added crushed brick particles. The variable parameter a (brick content) has a meaning of the mass
portion in the mix (lime : brick : sand = 4 : a : 5). The calculation were done assuming the size of the
brick particles to be 1 mm in diameter. From the nature of the Mori-Tanaka method, the crushed brick
size distribution does not have any effect in case of uncoated particles, but plays a significant role in case
of particles with coating.

Fig. 4: A dependence of the effective mortar stiffness on coating thickness

If the C-S-H gel coating is formed, a bigger coating thickness should result in an increase of the
effective mortar stiffness (see Fig. 4). The same increase of the effective mortar stiffness can be obtained
if smaller crushed brick particles are added (see Fig. 5).

It can be concluded that the C-S-H gel formation on the interface of crushed brick particles results
in an increase of the effective mortar stiffness. This increase is steep if the ratio of gel thickness to size
of brick particles is relatively high (see Fig. 5), and that can be ensured by addition of crushed brick
particles having a smaller diameter.

A reduction or increase of the deviatoric stress in the lime matrix is also strongly dependent on the
ratio of coating thickness to size of crushed brick particles. If the added brick particles are smaller, the
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Fig. 5: A dependence of the effective mortar stiffness on a diameter of brick particles

effect of C-S-H gel coating becomes greater and the deviatoric stress within the lime matrix significantly
decreases (see Fig. 6). The values on the y-axis in Fig. 6 represent the ratio of the quadratic average
of the deviatoric stress in the lime matrix for particles approaching zero diameter (being the reference
value), ‖s(0)(r → 0)‖, to the quadratic average of the deviatoric stress in the lime matrix for crushed
brick particles of a variable size (on the x-axis), ‖s(0)‖.

Fig. 6: A dependence of the deviatoric stress in matrix on a diameter of brick particles

From the calculations it seems reasonable to add a certain amount of finely ground bricks into to the
mix, since it should result in a reduction of the deviatoric stress within the matrix. It can be concluded
that big-size brick particles cause a mortar stiffness decrease and the small particles are responsible for
a reduction the deviatoric stress in lime matrix. This reduction can be seen in Fig. 7, where the uniform
crushed brick size distribution was modified in order to reduce the deviatoric stress in the lime matrix
and to keep the mortar stiffness as low as possible. While in case of the uniform crushed brick size
distribution the deviatoric stress within the lime matrix is increasing with the addition of crushed brick
particles, it is being reduced with the addition of crushed bricks having a smaller diameter.

For the conservation mortars a low elastic modulus and sufficient strength are, together with ductility,
usually required (Velosa et al., 2009). The proper composition of a mortar can be prepared using multiple
fractions of crushed bricks. Fine brick particles in the mix should ensure a reduction of the deviatoric
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Fig. 7: A comparison of a uniform and modified size distribution crushed brick particles

stress in matrix, and therefore increase the mortar strength. On the other hand, bigger fractions make the
mortar more compliant.

5. Conclusions

The calculations based on micromechanical approach revealed, confirmed or provided an explanation to
the following facts:

• The assumption of C-S-H gel formation on the matrix-crushed brick interface has a major influence
on behavior of the cocciopesto mortars, especially in case of small crushed brick fractions.

• The main factor influencing the behavior of the crushed bricks (or other clay products, such as tiles
or pottery) in a mortar is the ratio of coating thickness to crushed brick size. It was also found that
the addition of crushed bricks, having a bigger diameter, should make the mortar more compliant
and cause an increase of the deviatoric stress in the matrix. The addition of crushed bricks of a
small size results in the opposite behavior - the mortar becomes stiffer and the deviatoric stress in
the lime matrix is reduced, ensuring a higher mortar strength.

• The proposed model also confirmed a negative effect of voids in lime mortars, since the increased
porosity causes quite large increase of the deviatoric stress within the lime matrix, and therefore
reduces the mortar strength (Nežerka, 2011).

However, the results provided in this work, cannot be considered as exact because of a few simpli-
fications and uncertainties in the calculation. The Mori-Tanaka homogenization technique assumes the
materials to behave linearly and it is expected that the C-S-H gel should have additional positive effect on
the mortar strength if the non-linear behavior were considered. The thickness of the C-S-H gel coating,
20 µm, cannot be also taken as the exact universal value, since it is dependent on the amount and a chem-
ical composition of the individual mortar constituents. There is also uncertainty around the reduction of
porosity, if the C-S-H gel is formed.
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Appendix

The individual matrices, needed for the calculation of coefficients a1, a2 and b1, b2 that are necessary for
the determination of the deviatoric constraint constants (see Section 2.3.), can be found as

E =




1 − 6ν(c)

1− 2ν(c)
3

5− 4ν(c)

1− 2ν(c)

1 −7− 4ν(c)

1− 2ν(c)
−2 2

1
3ν(c)

1− 2ν(c)
−12

−2
(
5− ν(c)

)

1− 2ν(c)

1 −7 + 2ν(c)

1− 2ν(c)
8

2
(
1 + ν(c)

)

1− 2ν(c)




(31)

F =




3
5− 4ν(m)

1− 2ν(m)

−2 2

−12G(m)

G(c)

−2
(
5− ν(m)

)

1− 2ν(m)

G(m)

G(c)

8G(m)

G(c)

2
(
1 + ν(m)

)

1− 2ν(m)

G(m)

G(c)




(32)

H =




1 − 6ν(g)

1− 2ν(g)

1 −7− 4ν(g)

1− 2ν(g)




(33)

K = GE−1F (34)

R = P + QE−1FK−1H (35)

where

G =




1 −6ν(c)c 2/3

1− 2ν(c)

3

c 5/3

5− 4ν(c)

(
1− 2ν(c)

)
c

1 −
(
7− 4ν(c)

)
c 2/3

1− 2ν(c)
− 2

c 5/3

2

c




(36)

P =




1
3ν(g)

1− 2ν(g)

1 −7 + 2ν(g)

1− 2ν(g)




(37)

and finally

Q =
G(c)

G(g)




−1 −3ν(c)c 2/3

1− 2ν(c)

12

c 5/3

2
(
5− ν(c)

)
(
1− 2ν(c)

)
c

−1

(
7 + 2ν(c)

)
c 2/3

1− 2ν(c)
− 8

c 5/3

2
(
1 + ν(c)

)
(
1− 2ν(c)

)
c




(38)
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