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Abstract: Homogenization methods are becoming the most popular approach to modelling of heteroge-
neous materials. The main principle is to represent the heterogeneous microstructure with an equivalent
homogeneous material. When dealing with the complex random microstructures, the unit cell representing
exactly periodic morphology needs to be replaced by a statistically equivalent periodic unit cell (SEPUC)
preserving the important material properties in the statistical manner. One of the statistical descriptors
suitable for SEPUC definition is the lineal path function. It is a low-order descriptor based on a more
complex fundamental function able to capture certain information about the phase connectedness. Its main
disadvantage is the computational cost. In this contribution, we present the reformulation of the sequential
C code for evaluation of the lineal path function into the parallel C code with Compute Unified Device
Architecture (CUDA) extensions enabling the usage of computational potential of the NVIDIA graphics
processing unit (GPU).
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1. Introduction

Modelling of random heterogeneous materials is a multi-disciplinary problem with a wide range of rele-
vant engineering applications. The unifying theoretical framework is provided by homogenization theo-
ries, which aim at the replacement of the heterogeneous microstructure with an equivalent homogeneous
material, e.g. Torquato (2002). Currently, two main approaches are available: (i) computational homog-
enization and (ii) effective media theories. While the first class of methods studies the distribution of
local fields within a typical heterogeneity pattern using a numerical method, the second group estimates
the response analytically on the basis of limited geometrical information (e.g. the volume fractions of
constituents) of the analysed medium.

It is generally accepted that detailed discretisation techniques, and the Finite Element Method (FEM)
in particular, remain the most powerful and flexible tools available. Despite of the tedious computation
time, it provides us details of local stress and strain fields. Moreover, it is convenient to characterize
the material heterogeneity by introducing the concept of a Periodic Unit Cell (PUC) (Vorel, 2009) or
Statistically Equivalent Periodic Unit Cell (SEPUC), see Zeman and Šejnoha (2007); Vorel et al. (2012)
for more details. On the other hand, if only the overall (macroscopic) response is demanded variable,
it is sufficient to introduce structural imperfections in a cumulative sense using one of the averaging
schemes, e.g. the Mori-Tanaka method (Vorel and Šejnoha, 2009). If the effective material parameters of
complex microstructure (see Figure 1) are demanded, the homogenization technique based on the SEPUC
can be utilized. Furthermore, this approach allows us to reduce the computation cost by generating
smaller unit cell describing the real structure. The generation of the SEPUC is based on optimization
of an appropriate statistical descriptor. One most commonly used group of descriptors embodies a set
of general n-point probability functions, applicable to an arbitrary two-phase composite. A different
statistical function deserves attention when phase connectivity information is to be captured in more

*Jan Havelka: Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7/2077; 166 29, Prague; CZ,
e-mail: jan.havelka.1@fsv.cvut.cz
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detail, as e.g. for medium in Figure 1. Therefore we focus here on usage of the lineal path function. The
principal drawback concerns its evaluation, which is non-negligible time-consuming, especially when
evaluated many times within the optimization process. Hence, we present an accelerated implementation
of the lineal path function on the GPU. The following section details the definition of the lineal path

Fig. 1: Three cuts through trabecular bone microstructure obtained by micro Computed Tomogra-
phy (Jiroušek et al., 2008)

function. The Section 3. discusses its algorithmic formulation and Section 4. presents the resulting
speed-up obtained at GPU in comparison with the sequential CPU formulation together with concluding
remarks.

2. Lineal path function

The lineal path function (Lu and Torquato, 1992) is one of the low-order microstructural descriptors
based on a more complex fundamental function which contains more detailed information about phase
connectedness and hence certain information about long-range orders (Zeman, 2003).

The fundamental function can defined as

λr(x1,x2, α) =

{
1, if x1x2 ⊂ Dr(α),
0, otherwise,

(1)

i.e., a function which equals to 1 when the segment x1x2 is contained in the phase r for the sample α
and zero otherwise. The lineal path function, denoting the probability that the x1x2 segment lies in the
phase r, then follows directly from the ensemble averaging of this function

Lr(x1,x2) = λr(x1,x2, α). (2)

Under the assumptions of statistical homogeneity and isotropy, the function simplifies to

Lr(x1,x2) = Lr(x1 − x2) = Lr(‖x1 − x2‖). (3)

Obviously, if the points x1 and x2 coincide, the lineal path function takes the value of volume fraction of
the phase r. On the other hand, for points x1 and x2 that are far apart the lineal path function vanishes.

Fig. 2: Schema of the lineal path function
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3. Algorithmic formulation

The generation of SEPUC is usually based on digital images, which are discretised representation of a
studied medium. The segments are then defined as a set of pixels connecting two pixels p1 and p2 with
the coordinates within the image pi = (w, h), and , where W and H are the dimensions of the image
(see Figure 2). The sets of pixels for segments starting in p1 = (1, 1) and ending in p2 = (w, h) are
obtained by algorithm given in Bresenham (1965). The group of segments is complemented by the ones
starting in p1 = (1, H) and ending in p2 = (w, h) to cover all possible lengths and orientations within
the image. Once having the defined segments, the computation of lineal path function involve simple
translations of each segment throughout the image and the comparison whether all pixels of the segment
at a given position correspond to image pixels with the value representing the investigated phase.

Since the generation of segments can be done only once for a given image size, this part of the code
does not necessarily need to be so fast. The crucial part of the code is the translation of the segment and
the comparison with the image, which is called repeatedly for any new image created during the opti-
mization of the SEPUC. Having a single CPU, the translations and comparisons needs to be performed
sequentially, see Figure 3. Last years witnessed increasing popularity of parallel computations on GPUs.

Fig. 3: Schema of the sequential code

The reason is the high performance at relatively low cost. Moreover, the CUDA simplifies the GPU-
based software development by using the standard C language, see NVIDIA Corporation (www). We
used the high number of simple GPU threads to compute the translations and comparisons of segments
simultaneously, see Figure 4.

Fig. 4: Schema of the parallel code

4. Conclusions

We have compared the sequential variant of lineal path function calculation on a single CPU with the
parallel one using the GPU. The particular computations were performed on INTEL Core i7 CPU 950
@ 3.07 GHz, 12 GB RAM, GPU - NVIDIA QUADRO 4000 with Microsoft Windows Enterprise SP
1 operating system and the CUDA v. 4.0 compute capability. The efficiency of GPU parallelism was
demonstrated on evaluation of lineal path function for 10 two-dimensional images with the size varying
from 50x50 px to 500x500 px, see Figure 5(c). Two distinct calculations of lineal path function were
considered. The originally developed algorithm covering all possible segments in the domain and en-
hanced method with constraint of first zero segment in given direction. Table 1 shows the amount of time
necessary for one evaluation of lineal path function depending on the image size and chosen method.
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(a) (b)

(c)

Fig. 5: (a) Lineal path function, (b) lineal path function (view X-Y), (c) testing image 500x500 px

One can see that for very small images, the usage of CPU outperforms the GPU because of additional
time spent by copying the data from main memory RAM to GPU memory. Nevertheless, the parallelism
of GPU gains for images larger than 50x50 px and the time savings increase rapidly.
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Standard Enhanced
D/ML
[px]/[px]

GPU [s] CPU [s] ratio D/ML
[px]/[px]

GPU [s] CPU [s] ratio overall
speedup

50/50 0.179 0.328 1.83x 50/50 0.156 0.265 1.69x 2.10x
100/100 1.075 4.617 4.29x 100/100 0.722 2.371 3.28x 6.39x
150/150 3.957 21.653 5.47x 150/150 1.954 8.018 4.10x 11.08x
200/200 10.209 66.425 6.51x 200/200 3.621 14.742 4.07x 18.34x
250/250 22.276 169.245 7.59x 250/250 6.427 27.612 4.29x 26.33x
300/300 43.429 357.022 8.22x 300/250 8.413 42.338 5.03x 42.44x
350/350 76.644 649.195 8.47x 350/250 10.909 63.304 5.80x 59.51x
400/400 127.841 1127.897 8.82x 400/250 13.481 84.287 6.25x 83.67x
450/450 209.693 1821.911 8.69x 450/250 18.608 122.569 6.59x 97.91x
500/500 315.951 2846.712 9.01x 500/250 21.145 139.698 6.61x 134.64x

Tab. 1: Comparison of CPU and GPU performance (D=dimension of testing image in pixels,
ML=maximal length of segment in pixels)
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