
STRUCTURES WITH UGLI IMPERFECTIONS 
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Abstract: Derivation of the basic formulae for determination of the flexural buckling resistance of frames 
with members with non-uniform cross-sections and/or non-uniform axial compression forces. Similar 
formulae given in EN 1993-1-1 (2005) are limited to frames with uniform cross-sections and compression 
forces. Detailed description of the procedure of iterative calculation (Baláž, I., 2008). Graphical 
interpretation of the method proposed by the authors and numerical examples for members with uniform 
cross-sections and uniform axial compression forces.  

Keywords: stability, metal structures, flexural buckling resistance,  imperfections in the form of first 
buckling mode.  

1. Introduction 

The proposed procedure was the first time published in Baláž, I. (2008) and was verified by 
calculating of several numerical examples. The procedure is based on Chladný`s method. Derivation 
of the basic formulae used in this paper differ from the ones published by Chladný in publication 
Baláž, I. et al. (2007, 2010). The way of calculation proposed by Baláž, I. (2008) was used also in PhD 
thesis written by Kováč, M. (2010).  

Prof. Chladný developed his method with the aim to derive a formula for the lateral forces acting 
on U-frames of open truss bridges in Chladný, E. (1958) and in Chladný, E. (1974). He showed there 
the importance of the curvature of the initial imperfection. The results were used in Czechoslovak 
Bridge Standard ČSN 73 6205 (1984), cl. 39.  See also Chladný, E. (1998).  

In 2000 proposed Prof. Chladný his method in more generalized form for Eurocode 3, and it was 
the first time accepted in draft prEN 1993-1-1 (5 June 2002). His contribution is acknowledged in 
publication (Sedlacek, G. et al., 2004). See there item [52]. Chladný derived the formula for d0,e  and 

is the author of the method given in EN 1993-1-1 (2005), 5.3.2(11). He later generalized it also for 
non-uniform cross-sections and non-uniform compression forces. This generalization is used in STN 
EN 1993-1-1/NA (2007) and in EN 1999-1-1 (2007), 5.3.2(11). Chladný applied his method in the 
design of bridges in practice, e.g. in design of basket handle arch type Apollo bridge in Bratislava, 
Pentele bridge in Dunaújváros and in investigations of continuous truss bridges. He further modified 
his method to be convenient for basket handle arch type bridges in the National Annex STN EN 1993-
2/NA (2009). Chladný described details of his method and published numerical examples in Baláž, I. – 
Ároch, R. – Chladný, E. – Kmeť, S. – Vičan, J. (2007, 2010).   

2. Flexural buckling resistance of frames with non-uniform members and non-uniform 
compression normal forces 

Flexural buckling resistance of the frame, which consists of members with variable cross-sections, 
with any boundary conditions, supports and/or variable foundation and under variable axial forces may 
be verified by the following condition 
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where 

 xNEd        is the axial force distribution, positive if compression, which is effect of the actions. The 

                    design values of the axial forces may be calculated by the 1st order theory, 

)(II
ugliEd, xM  is the bending moment distribution, which is the result of axial forces acting in members 

                    of frame having “unique global and local initial imperfection” („ugli“ imperfection). The 

                    design values of this bending moment shall be calculated by the 2nd order theory. The 

                    „ugli“ imperfection is an equivalent geometrical imperfection, which purpose is to cover 

                    in numerical model all imperfections (geometrical and structural) of real structure. 

)(Rd xN        is the distribution of the axial force resistance depending on the cross-section class, 

 xM Rd       is the distribution  of the bending moment resistance depending on the cross-section class. 

The characteristics relating to critical cross-section, which is the cross-section relevant for 
assessment of flexural buckling resistance of the frame, are below denoted by index „ m “. The most 
onerous condition (1) occurring in critical cross-section „ m “, may be then rewritten in the form 
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The “ugli” imperfection is defined as follows 

                                                             xx crmugli,0,ugli                                                                (3) 

where 

)(cr x    is the first elastic critical buckling mode, with the amplitude 1)(
maxcr x . 

mugli,0,  is the amplitude of „ugli“ imperfection depending on characteristics of critical cross-section 

              „ m “. Index „ 0 “ will in this paper indicate that a value is amplitude of a deflection. The 

              amplitude of „ugli“ imperfection may be determined from the condition requiring the 

              following: the critical member of the frame, when under compression axial force, should have 

              the same flexural buckling resistance as its “generalized equivalent member” („gem“). The 

              „gem“ is the member simply supported on its ends, having the same cross-section properties 

              ( mm, AEI ) and axial force ( mEd,N ) as the critical member of the frame in its critical cross- 

              section „ m “, and having such buckling length crL , that its elastic critical axial force is the 

              same as the elastic critical axial force mcr,N of the critical member of the frame in its critical  

              cross-section „ m “.  

The „ugli“ imperfection amplitude depending on the characteristics of the critical cross-section 
„ m “ is then defined by 
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where 

mηcr,M  is the absolute value of the fictitious bending moment at the critical cross-section „ m “, due 

               to )(cr x , 

mEd,N     is the design value of compression axial force at the critical cross-section „ m “, positive if 

               compression, 

mRk,M    is the characteristic value of bending moment resistance of the critical cross-section „ m “, 

mRk,N    is the characteristic value of axial force resistance of the critical-cross section „ m “, 

md,0,e , mk,0,e  are the design (index „ d “) and characteristic (index „ k “) values of amplitude of  

              “local initial” („li“) imperfection of the “gem” depending on the characteristics of the critical 

              cross-section „ m “. It can be easily shown, that „li“ imperfection is used when analysis of  

              individual member is done, 

m         is the imperfection factor for the critical cross-section „ m “ and the relevant buckling curve, 

              see Table 6.1 and Table 6.2 in EN 1995-1-1 (2005), 

M1       is the partial factor, which should be applied to the various characteristic values of resistance 

              of members to instability, 
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                             is the relative slenderness of the structure, relating to the critical-cross section „ m “, 

m         is the reduction factor depending on the relevant imperfection factor m   and the relative 

               slenderness m , see 6.3.1 in EN 1995-1-1 (2005),  

)(cr xN   is the distribution of elastic critical force, 

cr         is the minimum force amplifier for the values of the axial force configuration )(Ed xN  in 

               members to reach the values of elastic critical force configuration )(cr xN . For the given 

               frame, cr  is constant. The ratio cr  xNxN Edcr /)(  gives for all cross-sections „ x “ the 

               same numerical value. 

The location of the critical cross-section „ m “ is generally not known, because it depends on the 
location of maximum of the sum of two functions in the left side of the condition (1). The value of the 
second term of the sum in (1) depends on the characteristics of the critical cross-section „ m “.  The 
location of the maximum of the first function in (1):    xNxN RdEd /   usually does not coincide with 

the location of maximum of the second function in (2): )(/)( Rd
II

ugliEd, xMxM , which is given by the 
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location of the maximum of the function   
maxcr )(/x xI  . Generally it is therefore necessary to use 

iterative calculation.  

In the special case, when    xNxN RdEd /  is constant, the location of critical cross-section „ m “ is 

determined by the location of 
max

Rd
II

ugliEd, )(/)( xMxM  or   
maxcr )(/x xI   and when also  xEI  is 

constant, by the location of  
maxc xr  . 

Distribution of bending moment )(II
ugliEd, xM , which is the effect of axial forces acting in members of 

frame having the „ugli“ imperfection    xx crmugli,0,ugli   , may be calculated in the following 

way: 

1) The first eigen-value cr  and the first buckling mode  xcr  and its derivates  xcr  and  xcr   
are obtained by numerical methods using a computer program. 

2) The „ugli“ imperfection amplitude mugli,0, depending on the characteristics of the critical cross-

section „ m “ is calculated for the estimated location of the critical cross-section „ m “ 

                                                         
mηcr,

md,0,mEd,
crmugli,0,

M

eN
                                                          (8) 

3) The distribution of the “ugli” imperfection is then 

                                                              xx crmugli,0,ugli                                                               (9) 

4) The amplitude m0, of the additive deflection  x , which is the result of axial forces acting in the 

members of frame with „ugli“ imperfection, may be calculated as 
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5) The distribution of the additive deflection  x is then 
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6) The distribution of the bending moment )(II
ugliEd, xM  due to „ugli“ imperfection having shape of 

)(cr x , may be calculated from the formula 
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where 

k  is the well known ratio of the bending moment calculated according to the 2nd order  

     theory to the bending moment calculated according to the 1st order theory, which  

     is in the case of using elastic critical buckling mode )(cr x  constant value for the      

     whole frame 
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It may be also written 
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where 

                                                              x)( cr0crC,  Cx                                                                (15) 

is the first elastic critical buckling mode with amplitude 0C , which may have any numerical value, 
and 

                                                     md,0,mEd,
II

mugli,Ed,0, ekNM                                                             (16) 

 

From (14) it may be seen that, the first elastic critical buckling mode )(crC, x  with any value of the 

amplitude 0C  may be used, and not only  xcr  having 10 C , when computing ratio of bending 
moments  

                                                           mηcr,ηcr /)( MxM .                                                                    (17) 

 

7) After the distribution of the function on the left side of the condition (1) is known, the condition (2) 
may be evaluated and checked, if the location of maximum of this function will coincide with 
estimated location of the critical cross-section „ m “ from the first iteration. If the answer is no, the 
procedure shall be repeated in an iterative way. 

8) If the answer is yes, the condition (2) may be evaluated and the frame verified. 

3. Numerical examples 

Example 1: Given input values: uniform member with cross-section HE 260 B (ARBED), steel grade 
S 355, partial safety factor 1.1M1  , member length m6.4L , action: axial normal force EdN  

equals to the resistance, which means that for EdN  utilization grade 1U . Two cases are 
investigated:  

a) flexural buckling about major axis y-y (buckling curve “b”, 34.0 ),  

b) flexural buckling about minor axis z-z (buckling curve “c”, 49.0 ).  

Boundary conditions are the same in both planes: left end is fixed, right end is simple supported.´ 
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a) Flexural buckling about major axis y-y (Figure 1-4) 
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        Fig. 1:  The first elastic buckling mode ηcr(x) valid for both cases: a) buckling about y-y and  

                                                                                                                  b) buckling about z-z 

 

 

         Fig. 2: Uniform global and local initial (“ugli”) imperfection valid for buckling about y-y  
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             Fig. 3:  Additive deflection η(x) due to NEd  for flexural buckling about major axis y-y 

 

 

 

                                 Fig. 4: Direct stresses for flexural buckling about major axis y-y 
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b) Flexural buckling about minor axis z-z  
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           Fig. 5: Uniform global and local initial (“ugli”) imperfection valid for buckling about z-z  

 

 

         Fig. 6:  Additive deflection η(x) due to N for flexural buckling about minor axis z-z 
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                                Fig. 7: Direct stresses for flexural buckling about minor axis z-z 

 

Example 2: Input data see in Lindner, J. – Heyde, S. (2009) in Fig. 42. Fig. 43 and results on page 
305-306 in Lindner, J. – Heyde, S. (2009) are incorrect. Correct values may be obtained very easy by 
proposed procedure as follows: 
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Example 3: Verification of in plane stability of steel large span arches using three different methods 
given in Eurocodes EN 1993-1-1 (2005), EN 1993-2 (2006), EN 1999-1-1 (2007): a) by equivalent 
column method and by global analysis taking into account the second order effects and relevant 
imperfections b) according to 5.3.2(11) in EN 1993-1-1 (2005) and 5.3.2(11) in EN 1999-1-1 (2007) 
and c) according to Tab.D.8 in EN 1993-2 (2006). The internal forces were calculated by IQ 100 
(Rubin, H. – Aminbaghai, M. – Weier, H., (2004)) using 1st and 2nd order analysis with and without 
imperfections. Details of calculation and distributions of internal forces for hingeless arch are 
presented here (see Fig. 11-14). Comparisons of all results including ones valid for the same but two-
hinged arch are given in Table 1. Details of calculation and internal forces distributions for two-hinged 
arch are not presented here. 

Characteristics of given structure: steel parabolic arch with span m320L , rise/span ratio 
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Material properties: Young modulus GPa210E , steel grade 355S , )mm40(MPa335  tf y , 

1.1M1  . Properties of uniform cross-section: area 2m381.0A , in plane second moment of  area 
4m714.1I , height of the cross-section ,m5h  in plane elastic section modulus 3m686.0W , in 

plane radius of inertia m121.2i . Class 3 cross-section; buckling curve „c“. Boundary conditions of 
hingeless arch:  

a) in plane: translation fixed and rotation fixed on both ends, 

b) the arch is laterally supported and no lost of stability out of plane may occur. 

Design values of actions: 

a) Permanent action uniform along the length of arch span MN/m13.0dg , 

b) Variable action along the left half of arch mMNqd /.020  (real value would be greater). 

c) In plane imperfection according to table D.8 in EN 1993-2 (2006): the shape of two asymmetric 
waves with design value of amplitude m8.0400/m320400/  Leo  (hingeless arch, buckling 
curve „c“ in table D.8). Mean value of uniform action along the length of arch span 

MN/m14.002.0*5.013.05.0 ddm,  qgq d . 

Influence of shortening of arch centre line due to normal force for hingeless arch 

032.0
40

121.2

4

45

4

45 22


















f

i  

Horizontal component of thrust MN426.43
032.01

1

40*8

320*14.0

1

1

8

22
m.d 







f

Lq
H . 

Replacement of initial imperfections according to table D.8 by equivalent action 
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d) Combination of design values of actions:  

for 1st and 2nd order analysis without imperfections (results see in Fig. 11 and Fig. 13 respectively): 

in left half of arch span length MN/m15.002.013.0ddl.d  qgq , 
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in right half of arch span length MN/m13.0dr.d  gq , 

for 1st and 2nd order analysis with imperfections (results see in Fig. 12 and Fig. 14 respectively) 

in left half of arch span MN/m16.0MN/m)0109.002.013.0(equ.eoddl.d  qqgq  

in right half of arch span length MN/m12.0MN/m)0109.013.0(equ.eodr.d  qgq . 

Internal forces 

Parabolic arch was replaced by structure having form of polygon. Arch span was divided into 100 
equal parts. Uniform loading q  was replaced by point loads .Q  Structure, values of point loads, 

reactions, deformations, distributions and values of internal forces N , M , V  for hingeless arch may 
be found in Fig. 11-14. 

Values in Fig. 11 and 12 were calculated by 1st order analysis without and with imperfections 
respectively, and values in Fig. 13 and 14 by 2nd order analysis without and with imperfections 
respectively.  Computer program IQ 100 (Rubin, H. et al., 2004) was used to obtain results. In all 
calculations the influence of normal force deformations was taken into account. 

Verification of arch stability 
Characteristic and design values of cross-section resistances 
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M1yRd  AfN ,

MNm8.2081.1/MPa335m686.0/ 3
M1yRd  WfM . 

a) Stability verification by using equivalent column method for hingeless arch 

Internal forces (Fig. 11): 

,MN2122.49)(qI,Ed, aN  MNm7498.66)(qI,Ed, aM . 

Buckling length factor calculated using academic Dinnik`s values for critical loading (Dinnik, A. N., 
1939) 
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In plane buckling length factor according to table D.4 in EN 1993-2 (2006) 67.0 . 
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In plane critical buckling force 
   

MN729.285
320*52.0*67.0

714.1*000210
2

2

2

2

cr 





s

EI
N , 

More exact value was taken into account MN257.2902122.49*8982.5)(qI,Ed,crcr  aNN  ,  

where 8982.5=crα  is minimum force amplifier, which was calculated by IQ 100 (Rubin, H. et al., 
2004). 

Relative slenderness 663.0
257.290

619.127

cr

Rk 
N

N . 

Measure of imperfection 49.0  (buckling curve „c“). 

Factor    833.0663.02.0663.049.015.0)2.0(15.0 22




   . 

Reduction factor 747.0
663.0833.0833.0

11
2222









 . 

In plane buckling resistance MN711.86
1.1

335
381.0*747.0

M1
Rdb, 


 yf

AN . 

Equivalent uniform moment factor for sway buckling mode obtained by using method 2 from 

Annex B in EN 1993-1-1 (2005). 9.0, ymC  and interaction factor is as follows 

103.1
711.86

2122.49
663.0*6.019.0

)(
6.01

Rdb,

qI,Ed,
ym,yy 







 
















N

aN
Ck  . 

Utilization grade  

0.1920.0353.0568.0
8.208

7498.66*103.1

411.86

2122.49)()(

Rd

qI,Ed,yy

Rdb,

qI,Ed,
I 







M

aMk

N

aN
U . 

b) Verification of strength by using 2nd order analysis with imperfections according to table D.8 
EN 1993-2 (2006) for hingeless arch 

Internal forces (Fig. 14): 

,MN0777.50)(eoq,II,Ed, aN  MNm621.103)(eoq,II,Ed, aM , 

Utilization grade  

0.1928.0496.0432.0
8.208

621.103

116

0777.50)()(

Rd

eoq,II,Ed,

Rd

eoq,II,Ed,
II 







M

aM

N

aN
U . 

c) Verification of strength by using 2nd order analysis with imperfections having shape of 1st 
buckling mode according to clause 5.3.2(11) in EN 1993-1-1 (2005) and EN 1999-1-1 (2007) for 
hingeless arch 

The total maximum normal stress )( MN    acts in support a, therefore critical point m is located in 
support a. In critical point m we have (index m is omitted in the following quantities): 

Internal forces (Fig. 13) 

,MN6309.49)(qII,Ed, aN MNm9147.67)(qII,Ed, aM , 

Minimum force amplifier for hingeless arch 8982.5cr   was calculated by IQ 100 (Fig. 8). 
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Fig. 8: First buckling mode ,1)3029(max,cr  999267.0)7170(cr  . Minimum force amplifier 

for the axial force configuration NEd to reach the elastic critical buckling force 8982.5cr  .        

 

In plane critical force MN733.2926309.49*8982.5)(qII,Ed,crcr  aNN  . 

Relative slenderness 66.0
733.292

619.127

cr

Rk 
N

N . 

Measure of imperfection 49.0  (buckling curve „c“). 

Factor    831.068.02.068.049.015.0)2.0(15.0 22




   . 

Reduction factor 749.0
66.0831.0831.0

11
2222









 . 

Characteristic value of imperfection amplitude 

    m406.0
619.127

714.229
2.066.049.02.0

Rk

Rk
ko, 

N

M
e  . 

Design value of imperfection amplitude 

m424.0
66.0*749.0

1.1

66.0*749.0
1

406.0
1

1

2

2

2
M1

2

ko,do, 













ee  

 

Fig. 9: Bending moment due to )(cr x  ( 1)(
maxcr x ). In the critical section m (located in left 

support a) the value kNm071.196mcr,
II

mηcr,  EIM . It was calculated by IQ 100 (Rubin, H. et 

al., 2004). 
 

Amplitude of unique global and local initial (“ugli”) imperfection depending on quantities in critical 
point m 
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815.632
071.196

733.292*424.0

mcr,

crdo,
mugli, 







EI

Ne
 

Unique global and local initial (“ugli”) imperfection  

)(815.632)()()( crcrmugli,ugliinit xxxx    

Deflection of the structure calculated using 2nd order analysis for the structure with imperfection 

)(193.129)(815.632
18982.5

1
)(

1

1
)(

1

1
)( crcrmugli,

cr
ugli
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II xxxxx cr 
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







 . 

 

Fig. 10:  Bending moment [MNm] in the structure due to )()( ugliinit xx    with allowing for 2nd 

order effects II
mηinit,M  M(a) = - 25.3311, M(32) = 25.5385, M(68) = - 25.5267, M(b) = 25.2534 

(note opposite signs to signs in moment line distribution). 

 

Bending moment in the structure due to )()( ugliinit xx    with allowing for 2nd order effects  

may be calculated from the formula 

 MNm3311.25kNm071.196*193.129kNm071.196
18982.5

815.632

1
II

mηcr,
cr

mugli,II
mηinit, 





 MM



. 

Utilization grade  

0.1874.0121.0325.0428.0

8.208

3311.25

8.208

9147.67

116

6309.49)()(

Rd

II
mηinit,

Rd

qII,Ed,

Rd

qII,Ed,
II













M

M

M

aM

N
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U  

 

The similar calculation as for hingeless arch, which is presented in details, was done also for the same 
but two-hinged arch. Numerical results of stability verification of hingeless and two-hinged arches 
obtained by using three different Eurocode methods are given in Table 1. Comparisons show good 
agreement of utilityzation grades. It is necessary to mention that safety margin of method given in 
5.3.2(11) is a little bit greater comparing with safety margin of equivalent member method and that the 
closer we are to utilitization grade 1U  the lesser is difference between safety margins. Method 
proposed by Chladný for 5.3.2(11) in EN 1993-1-1 (2005) and for 5.3.2(11) in EN 1999-1-1 (2007) 
uses characteristic value of imperfection amplitude ko,e . The value ko,e , should be based on statistical 

evaluations of measurements on real structures. In example presented here the value ko,e is taken 

according to EN 1993-1-1 (2005), because such evaluations are not available. 
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Tab. 1: Results of analysis of steel large span parabolic hingeless arch and the same but two-hinged 

           arch using three different procedures of Eurocodes EN 1993-1-1 (2005),  EN 1999-1-1 (2007) 

 1st order analysis 2nd order analysis 

 

according to 
5.2.2(3)c) in 

EN 1993-1-1(2005) 
without imper-

fections (they are 
hidden in  ). 

Method 2, 
Annex B 

with im-
perfections 

according to 
Tab.D.8 in 
EN 1993-2 

mm800

400/o



 Le

 

without 
imper-

fections 

according to 5.2.2(3)a) in 
EN 1993-1-1 (2005) 

with imperfections according to 

5.3.2(11) in 
EN 1993-1-1(2005) 
EN 1999-1-1(2007) 

mugli,  

Tab.D.8 in 
EN1993-2(2006) 

mm800

400/o



 Le
 

HINGELESS ARCH  ( 8982.5cr  , 506/mm8.632mugli, L , mm800400/o  Le ) 

 MNH  43.4493 43.906 

)(aN  - 49.2122 - 49.6467 - 49.6309 - 50.0777 

)(aM  

minM  

 MNm  

- 66.7498 - 98.0327 

- 67.9147 

- 103.621 
- 67.9147 

minM - 67.9147 - 

- 25.3311= 

= - 93.2458 

maxM  

 MNm  

)37(M  =  

= 31.4032 

)34(M  = 

= 48.714 

)3736( M = 35.6816 

)34(M = 

= 56.9085  

)32(II
ηinitM  = 

= 25.5385, 

maxM < 61 .22 = 

= (35.68+25.54) 

Utilitiz. 
grade 

in left half of 
arch 0.920 

  
in point m ≡ a     

0.874 
in point a     

0.928 

TWO-HINGED ARCH  ( 7187.2cr  , 431/mm1.742mugli, L , mm800400/o  Le ) 

 MNH  44.5596 44.926 

)(aN  - 50.1205 - 50.4683 -50.4376 - 50.7848 

 MNN  
)27(N  = 

=  - 45.7754 

)26(N = 

= - 45.8839 
)25(N = - 46.3515 

)25(N = 

= - 46.359 

maxM  

 MNm  

)27(M = 

= 39.3754 

)26(M = 

= 71.297 

)25(M = 58.2369 

)25(M = 

= 109.323  

)25(II
ηinitM  = 

= 57.80, 

M(25) = 

= 58.24+57.80 = 

= 116 .04 

Utilitiz. 
grade 

in left half of 
arch 1.019 

  
in point (25) ≈ m 

0.955 

in point (25) 

0.923      
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11a) Point loads: 240 kN + 49 x 480 kN + 448 kN + 49 x 416 kN + 208 kN, 

       reactions [MN, MNm]: H = 43.4493, Va = 23.3955, Vb = 21.4045, Ma = 66.7498, Mb =  4.18383 

 

  

 

11b) Maximum deformations [m]:  

      vertical deflection v(40) = 0.40449, (horizontal deflection u(30) = 0.059595) 

 

 

 

11c) Bending moments [MNm]:  

      M(a) = - 66.7498, M(25) = 21.4133, M(37) = 31.4032, M(83) = - 13.0495, M(b) = - 4.18383 

 

 

 

11d) Shear force [MN]: maximum value V(a) = 1.47707 

 

 

 

11e) Normal force [MN]: N(a) = - 49.2122, N(.25) = - 44.9711, N(50.) = - 43.4528, N(b) = - 48.3431 
 

Fig. 11: Hingeless parabolic arch. Span L = 320 m, rise 40 m, rigidities EA = 80 000 MN, EI = 
360 000 MNm2. 1st order analysis without imperfections. Shortening due to normal force is taken into 
account. Vertical loads qleft = 0.15 MN/m in left side of arch and qright = 0.13 MN/m in right side of 
arch were replaced by vertical point loads in 101 points. 
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12a) Point loads: 256 kN + 49 x 512 kN + 448 kN + 49 x 384 kN + 192 kN, 

       reactions [MN, MNm]: H = 43.4493, Va = 24.391, Vb = 20.409, Ma = 98.0327, Mb = - 27.0991 

 

 

  

12b) Maximum deformations [m]:  

      vertical deflection v(35-36) = 0.48801, (horizontal deflection u(29-30) = 0.097073) 

 

 

 

12c) Bending moments [MNm]:  

      M(a) = - 98.0327, M(25) = 37.7718, M(34) = 48.714, M(74) = - 27.7523, M(b) = 27.0091 

 

. 

 

12d) Shear force [MN]: maximum value V(a) = 2.35493 

 

 

 

12e) Normal force [MN]: N(a) = - 49.6467, N(.25) = - 45.0293, N(50.) = - 43.4547, N(b) = - 47.9085                          

 

Fig. 12: Hingeless parabolic arch. Span L = 320 m, rise 40 m, rigidities EA = 80 000 MN, EI = 
360 000 MNm2. 1st order analysis with imperfections. Buckling curve „c“. Shortening due to normal 
force is taken into account. Vertical loads qleft = 0.16 MN/m in left side of arch and qright =0.12 MN/m 
in right side of arch were replaced by vertical point loads in 101 points. 
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13a) Point loads: 240 kN + 49 x 480 kN + 448 kN + 49 x 416 kN + 208 kN, 

       reactions [MN, MNm]: H = 43.9052, Va = 23.4183, Vb = 21.3817, Ma = 67.9147, Mb = - 3.4664  

 

 

 

13b) Maximum deformations [m]:  

       vertical deflection v(39) = 0.4295, (horizontal deflection u(30) = 0.06689) 

 

 

 

13c) Bending moments [MNm]:  

M(a) = - 67.9147, M(25) = 23.9468, M(36-37) = 35.6816, M(79) = - 16.5234, M(b) = 3.4664 

 

 

 13d) Shear force [MN]: maximum value V(.1) = 1.3276 

 

 

 

13e) Normal force [MN]: N(a) = - 49.6309, N(.25) = - 45.4245, N(50.) = - 43.9086, N(b) = - 48.7416 

 

Fig. 13: Hingeless parabolic arch. Span L = 320 m, rise 40 m, EA = 80 000 MN, EI = 360 000 MNm2. 
2nd order analysis without imperfections. Shortening due to normal force is taken into account. 
Vertical loads qleft = 0.15 MN/m in left side of arch and qright = 0.13 MN/m in right side of arch were 
replaced by vertical point loads in 101 points. 
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14a) Point loads: 256 kN + 49 x 512 kN + 448 kN + 49 x 384 kN + 192 kN, 

       reactions [MN, MNm]: H = 43.9075, Va = 24.4384, Vb = 20.3616, Ma = 103.621, Mb = - 39.1536 

 

 

 

14b) Maximum deformations [m]:  

      vertical deflection v(35) = 0.5307, (horizontal deflection u(29-30) = 0.111524) 

 

 

 

14c) Bending moments [MNm]:  

      M(a) = - 103.621, M(25) = 43.7785, M(34) = 56.9085, M(73) = - 35.8893, M(b) = 39.1536 

 

 

 

14d) Shear force [MN]: maximum value V(a) = 2.19176 

 

 

 

14e) Normal force [MN]: N(a) = - 50.0777, N(.25) = - 45.4846, N(50.) = - 43.9137, N(b) = - 48.2988                          

 

Fig. 14: Hingeless parabolic arch. Span L = 320 m, rise 40 m, rigidities EA = 80 000 MN, EI = 
360 000 MNm2. 2nd order analysis with imperfections. Buckling curve „c“. Shortening due to normal 
force is taken into account. Vertical loads qleft = 0.16 MN/m in left side of arch and qright = 0.12 MN/m 
in right side of arch were replaced by vertical point loads in 101 points. 
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Example 4: The analysis of two-hinged arch with geometrical and loading parameters of Žďákov 
bridge was published in Baláž, I. – Koleková, Y. (2011 b). 

Example 5: Show how it is easy to find location “m” and to calculate the value of maximum bending 
moment due to equivalent uniform global and local initial imperfection )()( ugliinit xx    acting in 

the structure in the point “m”. The authors developed graphical interpretation of the method valid for 
members or frames with uniform cross-section and/or with uniform normal force distribution. The 
graphical interpretation of the method is shown in Fig. 15-17 for 14 structures. The steps of the 
graphical method: 

- draw the first buckling mode, 

- identify the buckling length crL . Keep in the mind that the elastic critical force crN is 
transmitted in the direction of the line, which connects two neighbouring inflexion 
points, 

- find the location of the point “m”, where the maximum normal stress acts. This stress 
consists from the normal stress due to uniform normal force and from the normal 
stress due to maximum bending moment due to equivalent “ugli” imperfection 

)()( ugliinit xx   . The point “m” is located: (i) in the middle of the buckling length 

crL  (see 6 cases in Fig. 15 and 2 non-sway frames in Fig.16 and 2 in Fig.17), or (ii) in 
the cross-section of the sway frames, where the part of the sinus wave defining 
buckling length has the maximum displacement (see 2 sway frames in  Fig.16 and 2 in 
Fig.17).  

- the value of amplitude d0,e  is defined by the formula derived by Chladný. This 

formula is today in EN 1993-1-1, (2005), 5.3.2(11), formula (5.10) and in EN 1999-1-
1, (2007), 5.3.2(11), formula (5.7). Not convenient symbol 0e  instead of d0,e is used 

in Eurocodes. The amplitude  d0,e  is located in the point “m”. 

- calculate factors 

                                        
Ed

cr
cr N

N
 ,    

cr

cr

cr

k





1
1

1

1 


                                   (18) 

- calculate bending moment due to equivalent “ugli” imperfection )()( ugliinit xx    

from simple formula (16, 19) by hand 

                                                      md,0,mEd,
II

mugli,Ed,0, ekNM                                        (19) 

Examples 6, 7, 8: relating to the structures with the non-uniform cross-sections and/or the non-
uniform normal force distribution were published by Chladný in (Baláž, I. et al., 2007, 2010) and by 
Kováč in Kováč, M. (2010). 

4. Conclusions   

New very promissing and useful method for design and verification of stability and flexural buckling 
resistance of metal members and frames with equivalent uniform global and local initial imperfections 
is presented. The original method was developed by Chladný and today is used in Eurocodes EN 
1993-1-1 (2005) and EN 1999-1-1 (2007). It may be used also for frames with non-uniform cross-
sections and/or non-uniform axial force distribution. In the paper new way of derivation of basic 
formulae of the method and clear step by step description of its application based on this derivation are 
presented. The original graphical interpretation of the method developed by authors is valid for frames 
with uniform cross-sections under uniform axial compression forces and enables to obtain very easy 
the maximum value of bending moment due to equivalent “ugli” imperfection. Several numerical 
examples show in details application of this method, which may be further developed and used also 
for lateral torsional buckling of beams.  
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Fig. 15: Bending moments due to equivalent “ugli” imperfections 
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Fig. 16: Bending moments due to equivalent “ugli” imperfections 
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Fig. 17: Bending moments due to equivalent “ugli” imperfections 
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Acknowledgement  

The authors acknowledge support by the Slovak Scientific Grant Agency under the contract No. 
1/1101/12.  

References  
Baláž, I. (2008) Determination of the flexural buckling resistance of frames with members with non-uniform 

cross-section and non-uniform axial compression forces, in: Zborník z XXXIV. aktívu pracovníkov odboru 
OK so zahraničnou účasťou „Teoretické a konštrukčné problémy oceľových a drevených konštrukcií 
a mostov“. Pezinok , pp.17-22. 

Baláž, I. (2009) Resistance of metal frames with UGLI imperfections, in: Zborník XII. Mezinárodní vědecké 
konference u příležitosti 110. výročí založení FAST VUT v Brně, Sekce: Inženýrske konstrukce, pp.11-14. 

Baláž, I., Koleková, Y. (2010 a) Flexural buckling resistance of frames with unique global and local initial 
imperfections, in: Sborník příspěvků: Mezinárodní konference Modelování v mechanice. VŠB-TU.  

      Ostrava, Fakulta stavební, Katedra mechaniky, pp.35-36. 

Baláž, I., Koleková, Y. (2010 b) Flexural buckling resistance of frames with unique global and local initial 
imperfections, in: Sborník příspěvků na CD: Mezinárodní konference Modelování v mechanice. VŠB-TU 
Ostrava, Fakulta stavební, Katedra mechaniky, pp.1-6.  

Baláž, I., Koleková, Y. (2010 c) Metal frames with non-uniform members and/or non-uniform normal forces 
with imprefections in the form of elastic buckling mode. ENGINEERING RESEARCH. In: Aniversary 
volume honoring Amália and Miklós Iványi. Pollack Mihaly Faculty of Engineering. University of Pécs, pp. 
B:3-B:15. 

Baláž, I., Koleková, Y. (2010 d) Flexural buckling resistance of metal frames with imperfection in the form of 
elastic buckling mode, in: Zborník 36. aktívu pracovníkov odboru oceľových konštrukcií. Oceľové, drevené a 
kompozitné konštrukcie a mosty. Hotel Boboty, Terchová – Vrátna. ŽU v Žiline, SSOK, pp.25-32. 

Baláž, I., Koleková, Y. (2011 a) Verification of in plane stability of steel arches, in: Zborník konferencie 
CONECO “Príprava, navrhovanie a realizácia inžinierskych stavieb”. Bratislava, pp.1-12. 

Baláž, I., Koleková, Y. (2011 b) In plane stability of two-hinged arches, in: Proc. of 6th European Conference on 
Steel and Composite Structures, Eurosteel 2011. Budapest, Vol. C, pp.1869-1874. 

Baláž, I., Ároch, R., Chladný, E., Kmeť, S., Vičan, J.: (2007, 2010) Design of Steel Structures According to 
Eurocodes STN EN 1993-1-1:2006 a STN EN 1993-1-8:2007. Slovak Chamber of Civil Engineers (SKSI) 
Bratislava, 1st Edition 2007, 2nd Edition 2010. (In Slovak). 

ČSN 73 6205 (1984) Design of steel bridge structures. Prague. 

Dinnik, A. N. (1939) Prodoľnyj izgib (teorija i priloženija). GONTI. 

EN 1993-1-1 (2005) Eurocode 3: Design of Steel Structures. Part 1-1: General Rules and Rules for Buildings 
CEN Brussels. 

EN 1993-2 (2006) Eurocode 3: Design of Steel Structures. Part 2: Steel Bridges. CEN Brussels. 

EN 1999-1-1 (2007) Eurocode 9: Design of Aluminium Structures. Part 1-1: General Structural Rules. CEN 
Brussels. 

Chladný,E. (1958) Nosnosť tlačených pásov otvorených mostov (Buckling resistance of compressed chords of 
open truss bridges) PhD thesis, SVŠT (Slovak Technical University of technology) Bratislava. 

Chladný, E. (1974) Vzper pružne podopretých tlačených prútov (Buckling of elastically supported compressed 
members) Habilitation thesis, SVŠT Bratislava 1974. 

Chladný, E. (1998) Nachweise der Querrahmen von Fachwerktrogbrücken mit offenem Querrschnitt nach EC 3-
2 und STN 73 6205. In: Entwurf, Bau und Unterhaltung von Brücken im Donauraum. Bauingenieur 
Sonderpublikation, Springer-VDI- Verlag, Düsseldorf. 

Kováč, M. (2010) Buckling resistance of metal members and frame structures. Application of new Eurocode 
methods. (In Slovak). PhD thesis. Faculty of Civil Engineering. Slovak University of Technology in 
Bratislava. Supervisor: I. Baláž. 

Lindner, J., Heyde, S. (2009) Schlanke Stabtragwerke. Stahlbau Kalender, pp.305-306. 

Rubin, H., Aminbaghai, M., Weier, H. (2004) Computer program IQ 100. TU Wien. Vollversion Okt. 2004. 
Wolters Kluwer Deutschland GmbH, Werner Verlag. 

Sedlacek, G., Eisel, H., Hensen, W., Kühn, B., Paschen, M. (2004) Leitfaden zum Fachbericht DIN 103. 
Stahlbrücken. Ausgabe März 2003. Ernst & Sohn, A Wiley. 

STN EN 1993-1-1/NA (2007) Design of steel structures. Part 1-1: General rules and rules for buildings. Slovak 
National Annex. SÚTN Bratislava. 

STN EN 1993-2/NA (2009) Design of steel structures. Part 2: Steel Bridges. Slovak National Annex. SÚTN 
Bratislava. 

86 Engineering Mechanics 2012, #233


