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STRUCTURES WITH UGLI IMPERFECTIONS

I. Balaz', Y. Kolekova

Abstract: Derivation of the basic formulae for determination of the flexural buckling resistance of frames
with members with non-uniform cross-sections and/or non-uniform axial compression forces. Similar
formulae given in EN 1993-1-1 (2005) are limited to frames with uniform cross-sections and compression
forces. Detailed description of the procedure of iterative calculation (Balaz, 1., 2008). Graphical
interpretation of the method proposed by the authors and numerical examples for members with uniform
cross-sections and uniform axial compression forces.

Keywords: stability, metal structures, flexural buckling resistance, imperfections in the form of first
buckling mode.

1. Introduction

The proposed procedure was the first time published in Balaz, 1. (2008) and was verified by
calculating of several numerical examples. The procedure is based on Chladny's method. Derivation
of the basic formulae used in this paper differ from the ones published by Chladny in publication
Balaz, I. et al. (2007, 2010). The way of calculation proposed by Balaz, 1. (2008) was used also in PhD
thesis written by Kovac¢, M. (2010).

Prof. Chladny developed his method with the aim to derive a formula for the lateral forces acting
on U-frames of open truss bridges in Chladny, E. (1958) and in Chladny, E. (1974). He showed there
the importance of the curvature of the initial imperfection. The results were used in Czechoslovak
Bridge Standard CSN 73 6205 (1984), cl. 39. See also Chladny, E. (1998).

In 2000 proposed Prof. Chladny his method in more generalized form for Eurocode 3, and it was
the first time accepted in draft prEN 1993-1-1 (5 June 2002). His contribution is acknowledged in

publication (Sedlacek, G. et al., 2004). See there item [52]. Chladny derived the formula for ¢, 4 and

is the author of the method given in EN 1993-1-1 (2005), 5.3.2(11). He later generalized it also for
non-uniform cross-sections and non-uniform compression forces. This generalization is used in STN
EN 1993-1-1/NA (2007) and in EN 1999-1-1 (2007), 5.3.2(11). Chladny applied his method in the
design of bridges in practice, e.g. in design of basket handle arch type Apollo bridge in Bratislava,
Pentele bridge in Dunatijvaros and in investigations of continuous truss bridges. He further modified
his method to be convenient for basket handle arch type bridges in the National Annex STN EN 1993-
2/NA (2009). Chladny described details of his method and published numerical examples in Balaz, 1. —
Aroch, R. — Chladny, E. — Kmet, S. — Vi¢an, J. (2007, 2010).

2. Flexural buckling resistance of frames with non-uniform members and non-uniform
compression normal forces

Flexural buckling resistance of the frame, which consists of members with variable cross-sections,
with any boundary conditions, supports and/or variable foundation and under variable axial forces may
be verified by the following condition
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where
Ngg(x) is the axial force distribution, positive if compression, which is effect of the actions. The

design values of the axial forces may be calculated by the 1st order theory,
M Ed,ugh (x) is the bending moment distribution, which is the result of axial forces acting in members

of frame having “unique global and local initial imperfection” (,,ugli‘ imperfection). The
design values of this bending moment shall be calculated by the 2nd order theory. The
,wugli® imperfection is an equivalent geometrical imperfection, which purpose is to cover
in numerical model all imperfections (geometrical and structural) of real structure.

Ngrq(x) is the distribution of the axial force resistance depending on the cross-section class,
Mpgg(x) s the distribution of the bending moment resistance depending on the cross-section class.

The characteristics relating to critical cross-section, which is the cross-section relevant for
assessment of flexural buckling resistance of the frame, are below denoted by index ,,m “. The most
onerous condition (1) occurring in critical cross-section ,,m “, may be then rewritten in the form

11
NEd,m N MEg ugli,m

<1 2)
N Rd,m M Rd,m
The “ugli” imperfection is defined as follows
Tugli (x) =110,ugli,mcr (x) 3)

where

ner(x)  1s the first elastic critical buckling mode, with the amplitude |77¢r (x)|nrlaX =1.

10,ugli,m 18 the amplitude of ,,ugli* imperfection depending on characteristics of critical cross-section

»m “. Index ,,0“ will in this paper indicate that a value is amplitude of a deflection. The
amplitude of ,,ugli“ imperfection may be determined from the condition requiring the
following: the critical member of the frame, when under compression axial force, should have
the same flexural buckling resistance as its “generalized equivalent member” (,,gem®). The
»gem™ is the member simply supported on its ends, having the same cross-section properties

(Ely, Ay ) and axial force ( Ngg , ) as the critical member of the frame in its critical cross-
section ,,m “, and having such buckling length L., that its elastic critical axial force is the
same as the elastic critical axial force N p, of the critical member of the frame in its critical

cross-section ,,m <.

The ,,ugli* imperfection amplitude depending on the characteristics of the critical cross-section
,» M “1is then defined by

_ Ncr,meo,d,m . NEd,meo,d,m 4
770,ugli,m = ” = Oy “)
E]m‘ncr,m ‘ ncr,m‘
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NRk,m
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where

‘M ncr,m‘ is the absolute value of the fictitious bending moment at the critical cross-section ,,m “, due
to 7, (x),

NEgqm 1s the design value of compression axial force at the critical cross-section ,,m “, positive if

compression,

M Rk,m is the characteristic value of bending moment resistance of the critical cross-section ,,m “,
NRk,m is the characteristic value of axial force resistance of the critical-cross section ,,m *,
€.dm> €.km are the design (index ,, d ) and characteristic (index ,,k *) values of amplitude of

“local initial” (,,li*) imperfection of the “gem” depending on the characteristics of the critical
cross-section ,,m ““. It can be easily shown, that ,,li* imperfection is used when analysis of

individual member is done,
O is the imperfection factor for the critical cross-section ,,m “ and the relevant buckling curve,
see Table 6.1 and Table 6.2 in EN 1995-1-1 (2005),

ym1  1s the partial factor, which should be applied to the various characteristic values of resistance

— N
A = | —Rm (7)
Ncr,m

is the relative slenderness of the structure, relating to the critical-cross section ,, m “,

of members to instability,

Im is the reduction factor depending on the relevant imperfection factor ¢, and the relative

slenderness Am , see 6.3.1 in EN 1995-1-1 (2005),

N, (x) is the distribution of elastic critical force,

Oy is the minimum force amplifier for the values of the axial force configuration Ngq(x) in
members to reach the values of elastic critical force configuration N (x). For the given
frame, a,, is constant. The ratio ¢, = N, (x)/ Ngq(x) gives for all cross-sections ,, x “ the

same numerical value.

The location of the critical cross-section ,,m “ is generally not known, because it depends on the
location of maximum of the sum of two functions in the left side of the condition (1). The value of the
second term of the sum in (1) depends on the characteristics of the critical cross-section ,,m “. The
location of the maximum of the first function in (1): Ng4(x)/ Ngq(x) usually does not coincide with

the location of maximum of the second function in (2): M ]IEId,ugli (x)/ Mgq(x), which is given by the
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location of the maximum of the function |77é’r (x)/1 (x)|maX . Generally it is therefore necessary to use
iterative calculation.
In the special case, when Npg4(x)/ Ngq(x) is constant, the location of critical cross-section ,,m “ is

determined by the location of ‘M }Isld,ugli (x)/ Mgy (x)‘ or |77('3'r (x)/1 (x)|maX and when also El(x) is
max

constant, by the location of |77(’:'r (Xxmax .

Distribution of bending moment M Ed,ugh(x) , which is the effect of axial forces acting in members of
frame having the ,,ugli“ imperfection nugli(x)znO,ugli,mncr(x)’ may be calculated in the following
way:

1) The first eigen-value ¢, and the first buckling mode 7., (x) and its derivates nér(x) and 7%.(x)

are obtained by numerical methods using a computer program.

2) The ,,ugli* imperfection amplitude 77 g1; m depending on the characteristics of the critical cross-

section ,,m ““ is calculated for the estimated location of the critical cross-section ,,m

_ Ngqmeo,d,m
770,ugli,m =CQer—T7 1 (8)
‘M ncr,m‘
3) The distribution of the “ugli” imperfection is then
Thgli (x) =10,ugli,mcr (x) ©)

4) The amplitude 7 p,, of the additive deflection 77(x), which is the result of axial forces acting in the

members of frame with ,,ugli* imperfection, may be calculated as

_ 10,ugli,m (10)

170,m 1
Oer —

5) The distribution of the additive deflection 7(x)is then

77 .
()= 170 miter () = == E22 1 () (1n)
o —1

6) The distribution of the bending moment M ]IEId,ugh (x) due to ,,ugli imperfection having shape of

1.+ (x) , may be calculated from the formula
M g () = ~E1GO(5) = ~E1 o) T80 () gy g Ve () (12)
oo —1 |Mncr’m|
where
k is the well known ratio of the bending moment calculated according to the 2™ order
theory to the bending moment calculated according to the 1* order theory, which

is in the case of using elastic critical buckling mode 7.,(x) constant value for the

whole frame

k=—o = (13)

It may be also written
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I — EI(x)n0(x) — E1(xX)nC cr (%)
Mg ugli (%) = KNEG me€0,d,m ——— T2 = KNEQ m€0,d.m ———T 5 =
E]m Mer,m E[m 71C,cr,m (14)
M cr (x) I Mcper (x)
= kNEd,meO,d,m = 0,Ed,ugli,m SR
‘Mncr,m ‘ ‘MC ncr,m‘
where
77C,cr(x) = COncr(X) (15)

is the first elastic critical buckling mode with amplitude C,;, which may have any numerical value,
and

11
MO,Ed,ugli,m = kNEd,meO,d,m (16)

From (14) it may be seen that, the first elastic critical buckling mode 7c ¢(x) with any value of the

amplitude C; may be used, and not only ncr(x) having Cy =1, when computing ratio of bending
moments

Mncr(x)/‘Mncr,m‘- (17)

7) After the distribution of the function on the left side of the condition (1) is known, the condition (2)
may be evaluated and checked, if the location of maximum of this function will coincide with
estimated location of the critical cross-section ,,m* from the first iteration. If the answer is no, the
procedure shall be repeated in an iterative way.

8) If the answer is yes, the condition (2) may be evaluated and the frame verified.

3. Numerical examples

Example 1: Given input values: uniform member with cross-section HE 260 B (ARBED), steel grade
S 355, partial safety factor y)q; =1.1, member length L =4.6m, action: axial normal force Ngq

equals to the resistance, which means that for Ngq utilization grade U=1. Two cases are
investigated:

a) flexural buckling about major axis y-y (buckling curve “b”, a =0.34),
b) flexural buckling about minor axis z-z (buckling curve “c”, a =0.49).

Boundary conditions are the same in both planes: left end is fixed, right end is simple supported.”
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a) Flexural buckling about major axis y-y (Figure 1-4)

HE260B S$355 f,=355:MPa  ~\p =11 f 4= 322727-MPa

h=026m b=026m buckling curve "p" o= 034

2 [, =149.2 x 106-mm4 W

y ely

= 1.148 x 106-:rr1m3

A= 1184 10°-mm
Ngg = 4.203-MN  Npg=3.821MN M, py = 407.54-kN-m

Npg=3.576MN N, =2087MN L, =3216m

Ncr 1
B=0699  e=— .= =836 k= ———=1136
NEq |-
cr
NRk
A = N, 0375 = 0.5-[1 Foe( Ny 02) + Ny ] = 0.6
1 M
X = ——— = 0936 i oAy — 0.2)-—— = 5.768-mm
¢+ 6 - Ny Rk
2
! X')\m
M1 L
Cod T G-~ 5.847-mm — = 786.727
1 — X')\m2 o.d
£-X . £-X £-X
1—cos| —||-e+sm — |- —
Mer(X) = C=6.283
C
3 2
X £ . X £
cos| g-— |-— —sin| & — |- —
M2 (X) = - Xy = 2.992m
Mo.ugli.m Qer®o.d'NEd
Nx) = ———— N (XD Ny uelim = = 7.981-mm
g — 1 SR -2 o ()|

My(x) = —E-Im2(x)

Mp{Xp) = 22751KN-m kNgg-e, g = 23.751-kN-m
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Fig. 1: The first elastic buckling mode n..(x) valid for both cases: a) buckling about y-y and

UGLI IMPERFECTION

Mugli(X)

Ncr.djrecﬁon.(x)

b) buckling about z-z

RKpax = 2-768m Xp=2992m  L-05L,=292m

Mo.ugli.m ~ 7.981-mm Mugli xm = nug]i(xm) = 7.842-mm

a) FLEXURAL BUCKLING ABOUT MAJOR AXIS y-y

101 :
o LL, X
e S > i S Mgl xm
i
6Fa =
5 -“s.. ey q = O-847-mm
4O A -
3 S
2r - ‘ -
It 5 =

RELATIVE MEMBER LENGTH

Fig. 2: Uniform global and local initial (“ugli”’) imperfection valid for buckling about y-y
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Mo uglim = 7-981-mm X = 2-768m n(xmax) = 1.084mm

a) FLEXURAL BUCKLING ABOUT MAJOR AXIS y-y

L

147

nx) 17

0.8

0.41

0.21

ADDITIVE DEFLECTION ETA(x) DUE TON

RELATIVE MEMBER LENGTH

Fig. 3: Additive deflection n(x) due to Ng, for flexural buckling about major axis y-y

Mpp(0) = -23.1834%-kN-m Npq = -3576.136-kN MH(xm) = 23.75066-kN-m
Ngqg  Mp®) Npg  Mp{Xp)
— =-322.233-MPa  x,,=2.992m — — ——— - _322727-MPa
A A W
a) FLEXURAL BUCKLING ABOUT MAJOR AXIS y-y
07
Xl’l’l
s - e = - ey - - -
101 | i i a--.--‘. - 1 7 -, -,‘-._.
O odda=0L" 03 04 05 d6 ! 07 08 09 1
- 301
- 701
N
e - 1107
O'M(X)

oo B

T NeM(O- 1901

— 230

— 270C

DIRECT STRESSES [MPa] DUE TO N, M, N+M, N-M

- 3101

- 350"
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Fig. 4: Direct stresses for flexural buckling about major axis y-y

Npg  My(xp) NEq
Upss —+ ———— Up=1 x=0936 f4=322727MP Upy= ——— Up=1
Npg  Mpg XAty
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b) Flexural buckling about minor axis z-z

HE260B S355 f,=355-MPa ;=11 £ 4=322727-MPa
h=026m b=0.26m buckling curve "c" o= 0.49
A= 1184 10°-mm> I, = 51.35 x 10%.mm” Wy, = 395 % 10°-mm°
Ngg = 4203-MN  Npgq=3.821:-MN M, py = 140.225-kN-m

Npq=2911-MN N =1029:-MN L =3.216m

Ner 1
B=0699 e=— o, =—=3534 ki= ——=1395
NEd 1 - L
Cor
N
Rk
A= |[— =0639  $= 0.5-[1 toe(Xy - 0.2) + >\m2] = 0.812
Ner
M
1 Rk
X = = 0762 egp oAy - 0.2)-N— = 7.179-mm
2 2 '
ENLIE R
2
1 X-km
M1 L
€5 d = eo.k'—2 = 7.473-mm — = 615.508
1 - ka eO d
1—-cos| —||[e+sm — |- —
L L L
NeX) = C = 6.283
C
3 2
X\ € _ X\ e
COS[S-EJ-—Q — S]II[SEj—z
_ L L
N2 (X) = o X = 2.992m
Mo.ugli.m Qer€o.d' NEG
Nx) = ———— M (X) Mo uelim = = 10.201-mm
g - 1 LT B 2oy

My(x) = —E-Im2(x)

M%) = 30.346kNm  kNpge, 4 = 30.346-kN-m
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= 2.768m X, =2992m  L-05L =2992m

Mo uglim = 10-20110m Mok o = Tygli{ Xpy) = 10.024-mm
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Z 10]
= 9
) 8]
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o N o (%) g
= cr.direction. 5
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Fig. 5: Uniform global and local initial (“ugli”) imperfection valid for buckling about z-z

Mo yglim = 10-201-mm Xpax = 2.768m ’q(xmax) = 1.025 mm

5T

4.51

3.5
3t

n{x) 2.57

o

L.5r

It

ADDITIVE DEFLECTION ETA(x) DUE TON

0.51

juik

a) FLEXURAL BUCKLING ABOUT MINOR AXIS z-z

Simax

s - i)

02 03 04 05 06 07 08 09 1
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Fig. 6. Additive deflection n(x) due to N for flexural buckling about minor axis z-z
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M;(0) = —29.62084-kN-m Npq = —2911.494-kN MH( ) 30.3455.kN-m
Ngq  Myp(0) NEd MII( m)
— = -320.893-MPa  x,, = 2.992m = —322.727-MPa
A W A
a) FLEXURAL BUCKLING ABOUT MINOR AXIS 7-7
1007 1
- -‘E- --
st -~ L T
= " i S
Zﬂ &, i ™ -~
E 107 t t . ‘ + t —t t t b =
z 0 01 02«%3 04 05 06 07 08 09 1
I -
= _ 35+ i
4 »~
o -U-I\I. b= -
& - 801
g UM(X)
= 125
£ TeNtM)
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Fig. 7: Direct stresses for flexural buckling about minor axis z-z
Ngg  Mpg{xp) NEq
Ups= —+ ——— Uj=1 x=0762 f,4=322727-MPa U= ———— U,=1
N M ¥ - A,
Rd Rd v.d

Example 2: Input data see in Lindner, J. — Heyde, S. (2009) in Fig. 42. Fig. 43 and results on page
305-306 in Lindner, J. — Heyde, S. (2009) are incorrect. Correct values may be obtained very easy by
proposed procedure as follows:

32 6 3
A=1184x10°mm" Wy, = 1.283x 10" mm f,=355MPa =1

Ny = 4.2032-MN R = 455.465kN-m  Npg=620kN o = 4.441

Mpl.y.
o= 034 B = 2.30385 )\.p = 1.23555 X = 0.459

2
k= ;1 -~ 1.291 L XA
1- — Mealy Rk M1

Clop €5 d = cx()\p - 0.2)- ;;k . 5

1- X-)\p

= 34.138mm

Mougim ™ ©o.d = 34.138 mm MH.Ed.imp = k:Npgeq g = 27.31674kN-m

Comparison with results obtained by computer program 1Q 100:

€5.d-Ner
EIng or = 2.7537-MN no.ug]i_m = —EI'I]H = 34.134mm MH.Ed.jmp = 27.314-kN-m
.cr
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Example 3: Verification of in plane stability of steel large span arches using three different methods
given in Eurocodes EN 1993-1-1 (2005), EN 1993-2 (2006), EN 1999-1-1 (2007): a) by equivalent
column method and by global analysis taking into account the second order effects and relevant
imperfections b) according to 5.3.2(11) in EN 1993-1-1 (2005) and 5.3.2(11) in EN 1999-1-1 (2007)
and ¢) according to Tab.D.8 in EN 1993-2 (2006). The internal forces were calculated by IQ 100
(Rubin, H. — Aminbaghai, M. — Weier, H., (2004)) using 1* and 2™ order analysis with and without
imperfections. Details of calculation and distributions of internal forces for hingeless arch are
presented here (see Fig. 11-14). Comparisons of all results including ones valid for the same but two-
hinged arch are given in Table 1. Details of calculation and internal forces distributions for two-hinged
arch are not presented here.

Characteristics of given structure: steel parabolic arch with span L =320m, rise/span ratio

4 . .
A = A0m. =0.125. The shape of arch 2 i,i and relative half length of the arch s , Which
L 320m L\ L L L\ L

are defined by expressions

2

2
[4£J +1 +L1n 4f (4%} +11][=0.52, respectively.

M=411(1_1J nd 5oL f,
L L 4 L 4f | L

L LL

Material properties: Young modulus E =210GPa, steel grade$355, f), =335MPa (#>40mm),

¥m1 = 1.1. Properties of uniform cross-section: area 4 = 0.381m?, in plane second moment of area

I=1.714m*, height of the cross-section / = 5m, in plane elastic section modulus # = 0.686 m>, in
plane radius of inertia i =2.121m. Class 3 cross-section; buckling curve ,,c*“. Boundary conditions of
hingeless arch:

a) in plane: translation fixed and rotation fixed on both ends,
b) the arch is laterally supported and no lost of stability out of plane may occur.
Design values of actions:

a) Permanent action uniform along the length of arch span g; =0.13MN/m,
b) Variable action along the left half of arch ¢; =0.02MN /m (real value would be greater).

¢) In plane imperfection according to table D.8 in EN 1993-2 (2006): the shape of two asymmetric
waves with design value of amplitude e, =+L/400 =£320m/400 = £0.8m (hingeless arch, buckling

curve ,c“ in table D.8). Mean value of uniform action along the length of arch span
dmd =84 +0.5¢4 =0.13+0.5%0.02 =0.14 MN/m .

Influence of shortening of arch centre line due to normal force for hingeless arch

N2 2
Bl (21217 o0y
4\ f 4\ 40

g dmel’ 1 _014%320° 1
8f 1+v  8%¥40 1+0.032

Horizontal component of thrust =43.426 MN.

Replacement of initial imperfections according to table D.8 by equivalent action

* *
8He, —i8 43.426 O'8i0.0109MN/m.

(0522 (0.5%320)

Gequ.eo ==+

d) Combination of design values of actions:
for 1 and 2" order analysis without imperfections (results see in Fig. 11 and Fig. 13 respectively):

in left half of arch span length ¢, 4 = g4 + ¢4 =0.13+0.02=0.15MN/m,
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in right half of arch span length ¢, 4 = g4 =0.13MN/m,

for 1* and 2" order analysis with imperfections (results see in Fig. 12 and Fig. 14 respectively)

in left half of arch span ¢; 4 = g4 +9q + gequ.co = (0.13+0.02+0.0109) MN/m ~ 0.16 MN/m
in right half of arch span length ¢, 4 = g4 — gequ.co =(0.13-0.0109) MN/m ~ 0.12MN/m..

Internal forces

Parabolic arch was replaced by structure having form of polygon. Arch span was divided into 100
equal parts. Uniform loading ¢ was replaced by point loads Q. Structure, values of point loads,

reactions, deformations, distributions and values of internal forces N, M , V' for hingeless arch may
be found in Fig. 11-14.

Values in Fig. 11 and 12 were calculated by 1% order analysis without and with imperfections
respectively, and values in Fig. 13 and 14 by 2™ order analysis without and with imperfections
respectively. Computer program 1Q 100 (Rubin, H. et al., 2004) was used to obtain results. In all
calculations the influence of normal force deformations was taken into account.

Verification of arch stability
Characteristic and design values of cross-section resistances

Ngi = Afy =0.381m*335MPa = 127.619MN, Mgy =I¥f, =0.686m>335MPa = 229.714MNm
Nga = Afy ! vm1 =0.381m?335MPa/1.1=116 MN,,

Mg =Wfy | yai1 =0.686m>335MPa/1.1=208.8 MNm .

a) Stability verification by using equivalent column method for hingeless arch
Internal forces (Fig. 11):
NEgg,1,q(a) =—49.2122MN, Mgq4(a)=66.7498 MNm.

Buckling length factor calculated using academic Dinnik's values for critical loading (Dinnik, A. N.,
1939)

de =01} K[ Lo01) 0075 g £-02] ko L-02)Ff 100
L L L L L L L L

*
ﬂH(£=O.1)=7Z 8/ /L :n\/g 01 _ 0361,
L f 60.7
Ker| 2 =011

i 8//L 8*0.2
ﬂH(_ = 02) =7 = n\/ =0.395,
L Kc{f:O.Zj 101

L

(i: O.lj \Jcoslarctan(4 £/ L)] 0361 JJcos[arctan(4*0.1)] _0.678,
s/L(f/L=0.1) 0.513

S o (f JJcos[arctan(4 £/ L)] 3 Jeoslarctan(4*0.2)]
ﬁN(a)( 7= 0.2] ﬂH( = 0.2] S/L(f/L=02) 0.395 0.549 =0.636,

,BN(a)E% =0, 125) = ,BN(a)(% =0. 1) —%{ ﬂN(a)(% =0. 1} - ﬂN(a)L% = o.zﬂ =0.667

In plane buckling length factor according to table D.4 in EN 1993-2 (2006) £ =0.67.
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2 2 *
In plane critical buckling force N, = 2t — 721000071714 _ 05 579 MmN,

(Bs)  (0.67%0.52%320)

More exact value was taken into account No = ao;Ngq 1 q(a) =5.8982%49.2122 = 290.257MN,

where a,,. =5.8982 is minimum force amplifier, which was calculated by 1Q 100 (Rubin, H. et al.,
2004).

N _ [127.619 _
Ny V290257

663 .

Relative slenderness A = \/

Measure of imperfection o =0.49 (buckling curve ,,c*).

Factor @ = 0.5[1 +a(A-02)+ 12} = 0.5[1 +0.49(0.663 - 0.2) + 0.663 ]: 0.833.

Reduction factor y = ! = ! =0.747.
D+ \/(p2 7% 0.833+40.833% = 0.663>
. : Iy 335
In plane buckling resistance Ny rg =y A——=0.747* 0.381ﬁ =86.711MN .
M1 .

Equivalent uniform moment factor for sway buckling mode obtained by using method 2 from

Annex B in EN 1993-1-1 (2005). C,, , = 0.9 and interaction factor is as follows

‘N Ed,I,q(a)‘ _

kyy =Ciny| 1+0.62—
b,Rd

=1.103.

~49.2122|
0.9/ 1+0.6%0.663————!

Utilization grade

_ Ngg,1,4(a) s kyyMEg1q(a)  |-49.2122| . [-1.103*66.7498]

U
Y Mgy 86.411 208.8

0.568+0.353=0.920<1.0.

b) Verification of strength by using 2" order analysis with imperfections according to table D.8
EN 1993-2 (2006) for hingeless arch

Internal forces (Fig. 14):
NEd,Il,q,eo ((1) =-50.0777 MN, MEd,II,q,eo (Cl) =103.621MNm .

Utilization grade

_ NEd11,q,e0(9) . Mg 11,g,e0(@)  |-50.0777| . -103.621]
NRrg MRgq 116 208.8

Uy =0.432+0.496=0.928 <1.0.

¢) Verification of strength by using 2" order analysis with imperfections having shape of 1
buckling mode according to clause 5.3.2(11) in EN 1993-1-1 (2005) and EN 1999-1-1 (2007) for
hingeless arch

The total maximum normal stress (o +0)) acts in support a, therefore critical point m is located in
support a. In critical point m we have (index m is omitted in the following quantities):

Internal forces (Fig. 13)
Ngg,11,4(a) =—49.6309MN, Mgq 1y q(a) =67.9147MNm,

Minimum force amplifier for hingeless arch «, =5.8982 was calculated by 1Q 100 (Fig. 8).
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Fig. 8: First buckling mode Ty max(29—30) =1, 1o, (70=71) =—0.999267 . Minimum force amplifier

for the axial force configuration Ngyto reach the elastic critical buckling force o, =5.8982.

In plane critical force Ny = N q1q(a) =5.8982%49.6309 =292.733MN .

127.619
292.733

N,

cr

Relative slenderness A = \/ Vek =\/
Measure of imperfection « =0.49 (buckling curve ,,c).
Factor @ = 0.5[1 ra(A-02)+ 4 } = 0.5[1 +0.49(0.68-0.2)+ 0.682]: 0.831.

1 1
@ +\/¢2 _ 7% 0.831+4/0.8312 —0.66

=0.749.

Reduction factor y =

Characteristic value of imperfection amplitude

229714

eox = a(A-02) MRk _ 0 49(0.66-0.2) 0.406m
: Nrk 127.619
Design value of imperfection amplitude
-2
v | 0.749%0.66”

M1 1.1

€.d = €.k - =0.406 =0.424m
R T 0.749*0.66>

Fig. 9: Bending moment due to 1. (x) ( |77cr (x)| max = 1). In the critical section m (located in left

support a) the value ‘M %Icr’m‘ =EIl
al., 2004).

ncr,m”‘ ~196.071kNm. It was calculated by 10 100 (Rubin, H. et

Amplitude of unique global and local initial (“ugli”’) imperfection depending on quantities in critical
point m
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€, dNer _ 0.424%*292.733
196.071

=632.815

Thgli,m = "
e |

Unique global and local initial (“ugli”’) imperfection
Ninit (X) = Thgli (x)= Tgli,mTer (x) = 632.8157.,(x)

Deflection of the structure calculated using 2™ order analysis for the structure with imperfection

1

1l 1
n (x)= Thgli (x)= — Mugli,m7cr (x)= 632.8157;(x) =129.19377:,(x) .

5.8982 -1

o —1 |

Fig. 10: Bending moment [MNm] in the structure due to 1y;i(X) =1yg1;(x) with allowing for 2
order effects Ml = M(a) = - 25.3311, M(32) = 25.5385, M(68) = - 25.5267, M(b) = 25.2534

ninit,m =

(note opposite signs to signs in moment line distribution).

Bending moment in the structure due to 7;,i () = 7,1 (x) Wwith allowing for 2" order effects

may be calculated from the formula

Ml —"“g“’m‘ I ‘=wl%.onmm=129.193*196.071kNm=25.3311MNm.

ninitm = 1 M| T 5 8980 —
Utilization grade

o Neang@  Meang(@ M fniem _[-49.6309) N -67.9147] N [-253311]
T Npg Myy My 116 208.8 208.8

=0.428+0.325+0.121=0.874<1.0

The similar calculation as for hingeless arch, which is presented in details, was done also for the same
but two-hinged arch. Numerical results of stability verification of hingeless and two-hinged arches
obtained by using three different Eurocode methods are given in Table 1. Comparisons show good
agreement of utilityzation grades. It is necessary to mention that safety margin of method given in
5.3.2(11) is a little bit greater comparing with safety margin of equivalent member method and that the
closer we are to utilitization grade U =1 the lesser is difference between safety margins. Method
proposed by Chladny for 5.3.2(11) in EN 1993-1-1 (2005) and for 5.3.2(11) in EN 1999-1-1 (2007)
uses characteristic value of imperfection amplitude e,y . The value ¢,y , should be based on statistical

evaluations of measurements on real structures. In example presented here the value e, is taken

according to EN 1993-1-1 (2005), because such evaluations are not available.
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Tab. 1: Results of analysis of steel large span parabolic hingeless arch and the same but two-hinged
arch using three different procedures of Eurocodes EN 1993-1-1 (2005), EN 1999-1-1 (2007,

1* order analysis

2" order analysis

according to
5.2.2(3)c) in
EN 1993-1-1(2005)
without imper-
fections (they are
hidden in y).
Method 2,
Annex B

with im-
perfections
according to
Tab.D.8 in
EN 1993-2

e, =L/400 =
=800 mm

without
imper-
fections

according to 5.2.2(3)a) in
EN 1993-1-1 (2005)
with imperfections according to

532(11)in
EN 1993-1-1(2005)
EN 1999-1-1(2007)

Thgli,m

Tab.D.8 in
EN1993-2(2006)

e, =L/400 =
=800 mm

HINGELESS ARCH (., =5.8982, nyg1i m

=632.8mm~ L/506, e, = L/400==800mm)

H[MN] 43.4493 43.906
N(a) -49.2122 - 49.6467 - 49.6309 -50.0777
M(a)= - 67.9147
M - 67.9147 -
=M pmin - 66.7498 -98.0327 -103.621
-67.9147 -253311=
[MNm]
=-93.2458
M(36-37)=35.6816
Mo (32) =
M ax M((37) = M(34) = 1 M(34)=
[MNm] =31.4032 =48.714 =25.5385, =56.9085
M pax <61 .22 =
= (35.68+25.54)
Utilitiz. in left half of in point m = a in point a
grade arch 0.920 0.874 0.928

TWO-HINGED ARCH (g =2.7187, 1,4j;

m =742.1mm~ L /431, ¢, = L/400 ==800mm)

H[MN] 44.5596 44.926
N(a) -50.1205 - 50.4683 -50.4376 -50.7848
N(Q27) = N(26) = N(25)=
N[MN] @7 (20 N(25)=- 463515 (2
= -45.7754 =-45.8839 =-46.359
M(25)=58.2369
II
Mninit(zs) =
M MQ27)= M(26)= M(25)=
ax @7) (26) =57.80, (25)
[MNm] =39.3754 =171.297 M(25) = =109.323
=58.24+57.80 =
=116 .04
Utilitiz. in left half of in point (25) * m | in point (25)
grade arch 1.019 0.955 0.923

77
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11a) Point loads: 240 kN + 49 x 480 kN + 448 kN + 49 x 416 kN + 208 kN,
reactions [MN, MNm]: H = 43.4493, V, =23.3955, V, = 21.4045, M, = 66.7498, M, = 4.18383

11b) Maximum deformations [m]:
vertical deflection v(40) = 0.40449, (horizontal deflection u(30) = 0.059595)

11c) Bending moments [MNm]:
M(a) = - 66.7498, M(25) =21.4133, M(37) = 31.4032, M(83) =- 13.0495, M(b) = - 4.18383

11e) Normal force [MN]: N(a) = - 49.2122, N(.25) = - 44.9711, N(50.) = - 43.4528, N(b) = - 48.3431

Fig. 11: Hingeless parabolic arch. Span L = 320 m, rise 40 m, rigidities EA = 80 000 MN, EI =
360 000 MNm’. I* order analysis without imperfections. Shortening due to normal force is taken into
account. Vertical loads q; = 0.15 MN/m in left side of arch and qg, = 0.13 MN/m in right side of
arch were replaced by vertical point loads in 101 points.
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12a) Point loads: 256 kN + 49 x 512 kN + 448 kN + 49 x 384 kN + 192 kN,
reactions [MN, MNm]: H = 43.4493, V, = 24.391, V, = 20.409, M, = 98.0327, M,, = - 27.0991

12b) Maximum deformations [m]:

vertical deflection v(35-36) = 0.48801, (horizontal deflection u(29-30) = 0.097073)

12c) Bending moments [MNm]:
M(a) =-98.0327, M(25) =37.7718, M(34) = 48.714, M(74) = - 27.7523, M(b) = 27.0091

12¢) Normal force [MN]: N(a) = - 49.6467, N(.25) = - 45.0293, N(50.) = - 43.4547, N(b) = - 47.9085

Fig. 12: Hingeless parabolic arch. Span L = 320 m, rise 40 m, rigidities EA = 80 000 MN, EI =
360 000 MNm’. I* order analysis with imperfections. Buckling curve ,,c*. Shortening due to normal
force is taken into account. Vertical loads q.p = 0.16 MN/m in left side of arch and q,g,, =0.12 MN/m
in right side of arch were replaced by vertical point loads in 101 points.
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13a) Point loads: 240 kN + 49 x 480 kN + 448 kN + 49 x 416 kN + 208 kN,
reactions [MN, MNm]: H =43.9052, V, =23.4183, V,=21.3817, M, = 67.9147, M, = - 3.4664

13b) Maximum deformations [m]:
vertical deflection v(39) = 0.4295, (horizontal deflection u(30) = 0.06689)

13c) Bending moments [MNm]:
M(a) =- 67.9147, M(25) = 23.9468, M(36-37) = 35.6816, M(79) = - 16.5234, M(b) = 3.4664

13d) Shear force [MN]: maximum value V(.1) = 1.3276

13e) Normal force [MN]: N(a) = - 49.6309, N(.25) = - 45.4245, N(50.) = - 43.9086, N(b) = - 48.7416

Fig. 13: Hingeless parabolic arch. Span L = 320 m, rise 40 m, EA = 80 000 MN, EI = 360 000 MNnr".
2" order analysis without imperfections. Shortening due to normal force is taken into account.
Vertical loads qi. = 0.15 MN/m in left side of arch and q,g;, = 0.13 MN/m in right side of arch were

replaced by vertical point loads in 101 points.
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14a) Point loads: 256 kN + 49 x 512 kN + 448 kN + 49 x 384 kN + 192 kN,
reactions [MN, MNm]: H =43.9075, V, =24.4384, V,,=20.3616, M, = 103.621, M, = - 39.1536

14b) Maximum deformations [m]:

vertical deflection v(35) = 0.5307, (horizontal deflection u(29-30) = 0.111524)

14c) Bending moments [MNm]:
M(a) =-103.621, M(25) = 43.7785, M(34) = 56.9085, M(73) = - 35.8893, M(b) = 39.1536

14¢) Normal force [MN]: N(a) = - 50.0777, N(.25) = - 45.4846, N(50.) = - 43.9137, N(b) = - 48.2988

Fig. 14: Hingeless parabolic arch. Span L = 320 m, rise 40 m, rigidities EA = 80 000 MN, EI =
360 000 MNm’. 2" order analysis with imperfections. Buckling curve ,,c*. Shortening due to normal
force is taken into account. Vertical loads q;.; = 0.16 MN/m in left side of arch and q,ign, = 0.12 MN/m
in right side of arch were replaced by vertical point loads in 101 points.
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Example 4: The analysis of two-hinged arch with geometrical and loading parameters of Zd’akov
bridge was published in Baldz, I. — Kolekova, Y. (2011 b).

Example 5: Show how it is easy to find location “m” and to calculate the value of maximum bending
moment due to equivalent uniform global and local initial imperfection 7;,;;(x) =17,gi(x) acting in

the structure in the point “m”. The authors developed graphical interpretation of the method valid for
members or frames with uniform cross-section and/or with uniform normal force distribution. The
graphical interpretation of the method is shown in Fig. 15-17 for 14 structures. The steps of the
graphical method:

- draw the first buckling mode,

- identify the buckling length L., . Keep in the mind that the elastic critical force N, is
transmitted in the direction of the line, which connects two neighbouring inflexion
points,

- find the location of the point “m”, where the maximum normal stress acts. This stress
consists from the normal stress due to uniform normal force and from the normal
stress due to maximum bending moment due to equivalent “ugli” imperfection
Minit (X) = 77yg1i (x) . The point “m” is located: (i) in the middle of the buckling length
L., (see 6 cases in Fig. 15 and 2 non-sway frames in Fig.16 and 2 in Fig.17), or (ii) in
the cross-section of the sway frames, where the part of the sinus wave defining
buckling length has the maximum displacement (see 2 sway frames in Fig.16 and 2 in
Fig.17).

- the value of amplitude ¢y 4 is defined by the formula derived by Chladny. This
formula is today in EN 1993-1-1, (2005), 5.3.2(11), formula (5.10) and in EN 1999-1-
1, (2007), 5.3.2(11), formula (5.7). Not convenient symbol ¢, instead of ¢ qis used

in Eurocodes. The amplitude ¢ 4 is located in the point “m”.

- calculate factors

acrzh, k= I _ (18)

N Ed 1- Ay

1
aC}"
- calculate bending moment due to equivalent “ugli” imperfection 77;,;¢ (x) =77g1; (x)

from simple formula (16, 19) by hand

1
M, Ed uglim = kNEd,m€0,d,m (19)

Examples 6, 7, 8: relating to the structures with the non-uniform cross-sections and/or the non-
uniform normal force distribution were published by Chladny in (Balaz, 1. et al., 2007, 2010) and by
Kova¢ in Kovae, M. (2010).

4. Conclusions

New very promissing and useful method for design and verification of stability and flexural buckling
resistance of metal members and frames with equivalent uniform global and local initial imperfections
is presented. The original method was developed by Chladny and today is used in Eurocodes EN
1993-1-1 (2005) and EN 1999-1-1 (2007). It may be used also for frames with non-uniform cross-
sections and/or non-uniform axial force distribution. In the paper new way of derivation of basic
formulae of the method and clear step by step description of its application based on this derivation are
presented. The original graphical interpretation of the method developed by authors is valid for frames
with uniform cross-sections under uniform axial compression forces and enables to obtain very easy
the maximum value of bending moment due to equivalent “ugli” imperfection. Several numerical
examples show in details application of this method, which may be further developed and used also
for lateral torsional buckling of beams.
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