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Abstract: Recently, titanium metal foams are being considered as a suitable replacement for substituting
trabecular bone microstructure especially for their similar pore distribution. The most common methods
for determination of compressive effective elastic properties of such materials involve different approaches
based on finite element analysis (FEA) of their microstructure. The internal geometry is usually modeled by
two different methods - directly on the basis of a series of CT scans or using one of discretization schemes.
However, all these techniques require highly specialized hardware, software and significant amount of
computational time. In this paper, the effective elastic properties of the metal foam are instead obtained by
analytical modulus-porosity relations and results are compared with previous FE based analysis.
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1. Introduction

Metal foams are highly porous materials that possess unique combination of mechanical, acoustic and
electromagnetic properties. At very low specific weights and thus high specific stiffnesses, they are
able to absorb significant amount of deformation energy while guaranteeing other properties such as
high fire and heat resistance, noise attenuation and shielding of electromagnetic devices (Banhart, 2001).
Combination of these characteristics attracts application of metal foams in many engineering fields from
interior design and equipment to civil engineering and vehicle construction.

The recent development of many cost-effective production techniques increases their potential for
substitution of legacy engineering practices and/or substitution of the most commonly used materials.
Particularly, metal foams will be potentially able to outperform certain types of polymer foams and
honeycomb structures in light of mechanical and environmental properties respectively.

Furthermore, open-cell metal foams manufactured from biocompatible materials (i.e. pure Titanium,
Ti-Ni alloys, etc.) successfully mimic natural characteristics of human bones. Usage of titanium and
its alloys as fusion implants is one of the most important developments in the field of biomechanics
and biomaterials. Such structural implants offer high corrosion resistance, good mechanical properties
and exceptional biocompatibility among other biomaterials. Open-pore structure with mean pore di-
mensions of 200 – 500µm is susceptible of transport of body fluids and also the ingrowth of new bone
tissue. By modifying the morphology, amount, size and orientation of pores, mechanical characteristics
can be adjusted to particular bone tissue, which gives the opportunity to assess optimal characteristics
compatible with the bone. This is the key parameter in bone implant applications because it prevents the
stress-shielding problem existing in the implantation of bulk materials due to the mismatch of mechanical
properties.

During the last decades, there has been much effort dedicated to understanding of the porosity de-
pendence of the effective elastic constants of cellular metals. Numerous relations derived from various
constitutive laws have been developed as a result of extensive theoretical and experimental work. The
most of the relationships give the variation of elastic constants in terms of porosity. However, many
of the suggested laws contain fitting parameters whose mechanical and physical explanation is either
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Theoretical and Applied Mechanics AS CR, Prosecká 76; 190 00, Praha 9; CZ, e-mail:
[koudelkap,jirousek,doktor,zlamal,fila]@itam.cas.cz

m
2012

. 18thInternational Conference
ENGINEERING MECHANICS 2012 pp. 691–701
Svratka, Czech Republic, May 14 – 17, 2012 Paper #218



unclear or values of the parameters do not correspond to microstructural characteristics of the material.
This indicates that the derivation of the microstructure-property relationships for porous metals (with
both open- and closed-cell pores) is still an open issue and in many cases other parameters (i.e. pore
shape and distribution) have to be taken also into account.

In this paper, effective elastic properties in compression predicted by various models for modulus-
porosity relations are compared to experimental and numerical results of compressive behavior of Al-
poras aluminium closed-cell foam and Optinium open-cell biocompatible titanium foam. Experimental
values of elastic modulus and porosity of Alporas foam were assessed on the basis of quasi static com-
pressional loading and weighting of the sample respectively.

2. Materials

2.1. Alporas

Alporas R© is a closed-cell aluminium foam developed in late 80’s and produced by Japan manufacturer
Shinko Wire Co., Ltd. Structure of this material is typically constituted by large inner pores of polyhedral
shape with average size 4.5 mm. Cell walls that create complex random inner structure are typically
100µm thick with overall porosity approximately 90% (Miyoshi, 1998), although it can be manufactured
at different levels of porosity saying that polyhedron cells become spherical at porosities under 70%.
Foam is manufactured using special unnormalized alloy containing 97% of aluminium, 1.5% of calcium
and 1.5% of titanium (Miyoshi, 1998). Because material properties of this alloy are not provided by the
manufacturer, the material models typically use mechanical properties of 98% aluminium as stated in
(Konstantinidis, 2005).

Fig. 1: Alporas - macroscopic structure (left), surface of the cell wall captured using SEM - specimen
prepared for nanoindentation experiment (right)

2.2. Optinium

Optinium c© foam is manufactured using commercial grade CP4 titanium powder which is transformed
to open-pore structure using a propellant (space holder technique, see Singh (2009b)). Final porous
structure reaches effective porosity of 60− 65% and as has been shown in a permeability study of these
materials (Singh, 2009a), the pore and interconnect sizes are almost independent of relative density, but
foam strut thickness decreases with increasing porosity. Implants manufactured from this material are
ideal for their bone integration and ongrowth potential. The combination of bone-like mechanical prop-
erties with the interconnecting porosity leads to excellent biological fixation, a method that has already
been proven in endoprosthetics. Main usage of the implants is the surgical treatment of degenerate discs
of the lumbar spine and restoration of initial height of the intervertebral disc space.

3. Finite element analysis

Determination of mechanical characteristics of cellular materials using finite element (FE) analysis is
strongly dependent on microstructure modeling scheme. The internal structure can be generated directly
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Fig. 2: Macroscopic structure of Optinium

from samples of the real material or using one of several discretization methods. Direct modeling of the
internal structure is based on computed-tomography scanning of specimens. This approach facilitates
FE representation of the internal structure including all of its irregularities and defects (Vavřı́k, 2011).
Simultaneously, material properties at the level of the individual cells can be assessed by nanoindenta-
tion with high reliability and reproducibility (Jiroušek, 2009; Králı́k, 2011); moreover Digital Volumetric
Correlation (DVC) method can be used to identify the three-dimensional strain field in the loaded mi-
crostructure (Jiroušek, 2011). Instead of modeling the complex internal structure of metal foam directly,
a unit cell approach is often used. Internal structure of cellular materials can be then represented by mis-
cellaneous two- and three-dimensional models according to the various cellular forms. In the preceding
FE study (Koudelka, 2011) the beam-only discretization with cubic cells (Fig. 3) was used intentionally
to investigate its suitability for modeling of closed-cell foams and trabecular bones. It has been shown
that this discretization scheme, originally developed for modeling of open-cell foams, is suitable for also
assessment of elastic characteristics of Alporas closed-cell foam (Fig. 4). Declared elastic modulus
of Alporas (in the range from 0.4 GPa to 1.0 GPa) was acquired with model relative density in interval
0.08−0.13, which is consistent with real mechanical characteristics while significantly reducing amount
of computational time.

Fig. 3: Gibson-Ashby’s cell with corresponding equivalent ellipsoid

Fig. 4: Evolution of relative elastic modulus plotted against relative density - FE simulations of Alporas
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4. Effective elastic moduli of porous metals

From the view of micromechanics, cellular metals can be considered as a special case of multiphase
mixtures or materials with microstructure. The effective elastic properties can be predicted when me-
chanical characteristics of material components and microstructural details are known. Microstructural
information of the lowest order involve volume fractions of constituent phase whereas higher order in-
formation stands for pore size, shape and orientation including their statistical characteristics (Markov,
2000; Milton, 2003; Nemat-Nasser, 1999; Torquato, 2002).

Effective elastic modulusEe can be then considered as a function of phase moduliEi and the lowest-
order only (porosity φi) microstructural information (Pabst, 2004a):

Ee = f(Ei, φi) (1)

where Ei, i ∈ (0, 1, . . . , n) are the phase moduli of all n constituent phases and φi are the volume
fractions of the n phases.

For porous metals where the void phase exhibits approximately zero mechanical properties one can
assume that the void phase is redundant and therefore write the following basic assumptions: φ1 ≡ 1−φ,
φ2 ≡ φ and for void phase with zero elastic modulus: E2 = 0, E1 ≡ E0.

This provides for definition of Hashin-Shtrikman (HS) bound for the effective elastic modulus as:

EHS =
9KHSGHS

3KHS +GHS
(2)

where GHS ans KHS are HS bounds for the shear and bulk modulus respectively (Hashin, 1963). In gen-
eral, HS bounds are valid for microstructure called Hashin assemblage, which consists of polydisperse
composite spheres containing concentric spherical inclusions. In the case of macroscopically isotropic
porous material, Hashin assemblage would be approximated by a material containing hollow spheres
with an infinitely wide size distribution.

In the case of porous materials relative elastic modulus is the most frequently defined as:

Er =
Ee

E0
(3)

where Ee is the effective elastic modulus and E0 is the elastic modulus of matrix phase or solid skeleton
phase (for closed-cell and open-cell materials respectively). Linear dependence between the relative
elastic moduli and porosity can be considered at very low porosities:

Er = 1− [E]φ (4)

where [E] is the intrinsic elastic modulus defined as (Pabst, 2003):

[E] ≡ − lim
φ→0

Er − 1

φ
(5)

In the special case of a cellular material with spherical pores and solid phase Poisson’s ratio υ0 = 0.2
or υ0 = 0.33 the intrinsic elastic modulus is equal to two ([E] = 2) and any deviations from this value
may be inflicted by discrepancies from sphericity of pore shapes or discrepancies of the solid phase
Poisson’s ratio (Pabst, 2006a). This model also predicts a critical porosity parameter φc = [E]−1 ≤ 1
representing a point where the effective elastic modulus reaches zero and the material looses its integrity.

4.1. Nonlinear models

Porosity dependence of the effective elastic moduli is usually nonlinear. The applicability of modulus-
porosity relations is often stated to be controlled by the approximate isometry and not only by the spheric-
ity of pores. This is supported by the fact that Coble-Kingery relation in the form (Coble, 1956):
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Er = 1− [E]φ+ ([E]− 1)φ2 (6)

which reduces to:

Er = (1− φ)2 (7)

for porous material with spherical pores and solid phase Poisson ratio υ0 = 0.2 is in the same form
as a special case of power-law relations, functional equation approach, differential approach and semi-
empirical Gibson-Ashby model derived by fitting large set of experimental data irrespective to spherical
pore shape or isolated-pore topology. As a result, the connectedness of pores itself does not exclude the
use of any modulus-porosity relation.

The mechanical properties of foams can be modeled by considering deformation mechanisms of
individual cells (Ashby, 2004). Open-cell foams deform by bending followed at large loads by the
formation of plastic hinges within the cell walls. Relative elastic modulus is then defined as:

Er = α

(
ρf
ρ0

)η
(8)

where ρf is density of the foam, ρ0 is density of the matrix material, α and η are constants related to cell
geometry.

In closed-cell foams, bending of the cell walls is accompanied by stretching of the cell faces (Gibson,
1997). The relation for the relative elastic modulus has then a linear density term, which is related to
face stretching, and square term related to edge bending:

Er = Cϕ2

(
ρf
ρ0

)2

+ C(1− ϕ)
(
ρf
ρ0

)
(9)

where C is a constant related to cell geometry and ϕ is the fraction of solid contained in the cell edges. It
should be noted that experimental verification of these relations exhibits problems with the determination
of ϕ for high foam’s relative densities (above 30%) because there is no distinction between cell edges
and faces. Furthermore, either the cell size effect and cell anisotropy effect on mechanical properties are
not incorporated in the Gibson-Ashby’s model.

Other considered relations based on exponential and power laws are the most commonly used for
determination of modulus-porosity dependence of ceramic materials. In case of porous metals considered
in this paper, the modified exponential relation, Mooney-type exponential relation, Archie type relation,
Phani-Niyogi relation and Pabst-Gregorová relation are studied.

The modified exponential relation appears in the form (Mooney, 1951):

Er = exp

(−[E]φ

1− φ

)
(10)

Derivation of this equation has been given via the functional equation approach (Pabst, 2004b) and
trivial case for porous material with spherical pores leads to the prediction:

Er = exp

( −2φ
1− φ

)
(11)

This model results in zero relative modulus only in the case of 100% porosity. To allow for zero
relative modulus at porosities lower than 100%, additional parameter of critical porosity has to be intro-
duced, which leads to the Mooney-type exponential relation (Mooney, 1951):

Er = exp

(
−[E]φ

1− φ
φc

)
(12)
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Power-law relations are in the simplest form represented by the Archie-type relation (Archie, 1942):

Er = (1− φ)[E] (13)

This equation does not exhibit problem with zero relative modulus at 100% porosity and again the
critical porosity parameter can be introduced to allow zero relative modulus at porosities lower than
100%. This results in a Krieger-type power-law relation (Krieger, 1972), often called Phani-Niyogi
relation (Phani, 1987):

Er =

(
1− φ

φc

)[E]φc

(14)

All these exponential and power-law relations can be derived via the functional equation approach
and their semi-empirical character is given by the fact that intrinsic elastic modulus may not be reli-
ably known due to variations in pore shape and difficulties in assessment of pore size distribution and
connectivity. Thus, reliable estimates of critical porosities are not available.

Pabst-Gregorová model (Pabst, 2004c) has been found heuristically and appears in the form:

Er =
(
1− [E]φ+ ([E]− 1)φ2

)
(
1− φ

φc

)

(1− φ) (15)

This relation ensures zero relative elastic moduli for the case φ = φc. When critical porosity of
the material with spherical isometric pores is considered to be equal to 1, the relation reduces to the
Coble-Kingery relation (Eq. 6).

5. Results

The hereinbefore mentioned relations were applied to prediction of relative elastic moduli of porous
aluminium and titanium. Elastic characteristics of pore-free macroscopically isotropic matrix materials
which are necessary input information for calculation of the relative moduli were taken from literature
(Miyoshi, 1998; Singh, 2009b) and are listed in Tab. 1.

Tab. 1: Elastic characteristics of pore-free aluminium and titanium alloys used for manufacturing of
Alporas and Optinium respectively (CP stands for ”Commercially Pure”)

Alporas Optinium

Elastic property CP Aluminium CP4 Titanium

E [GPa] 69 112.3

υ [1] 0.33 0.317

Tab. 2: Elastic characteristics of reference materials

Material property Alporas Optinium

E [GPa] 0.826 10.4

porosity [1] 0.914 0.639

Internal structure of the studied materials is constituted of large overlapping void inclusions (closed
pores) of polyhedral shape and skeleton-like open pore structure with considerable variation in the size
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and orientation of the pores and hence the foam struts in case of Alporas and Optinium respectively. This
may lead to preliminary estimates of intrinsic elastic moduli significantly divergent from benchmark
value of 2.

For Alporas, however, when the data are fitted with master curve using the Archie-type relation (Eq.
13) which seems to be the most promising among other models, the resulting intrinsic tensile modulus
obtained via this equation is [E] = 1.84 for experimental results and [E] = 2.11 for FE results. When
the Phani-Niyogi relation (Eq. 14) is used for fitting with critical porosity as a additional parameter, the
intrinsic tensile modulus is [E] = 2.36, the critical porosity exceeds unity giving φC = 1.13 for exper-
imental data and [E] = 2.11, φC = 1.01 for FE results. Similarly, when the Pabst-Gregorová (Eq. 15)
model is considered in its complex form with both fitting parameters (intrinsic elastic modulus and criti-
cal porosity), fitted values are again close to benchmark ones with experimental [E] = 1.95, φC = 1.01
and numerical [E] = 2.03, φC = 1.00. It is apparent that if one lets vary freely the intrinsic elastic modu-
lus in the power-law equations (making it adjustable fit parameter) the resulting intrinsic tensiel modulus
is always approximately 2. Although internal structure of Alporas is composed of overlapping polyhe-
dral cells and not spherical ones (that are indicated by the intrinsic elastic modulus equal to 2), it can
be interpreted as a clear confirmation of the approximate isometricity of pores and also foam’s isotropic
mechanical characteristics. As contrasted to porosity dependence of porous ceramics, exponential-law
models are completely unsatisfactory for metal foams with modified exponential model (Eq. 10)resulting
in value [E] = 0.44 a and [E] = 0.88 for experimental and numerical results respectively. This result
indicates significant deviation from spherical pore shape but visual comparison of fitting curve and nu-
merical results shows diametrically different evolution of the fit model. By contrast, evolution of the
Mooney-type model (Eq. 12)fits the numerical curve well with intrinsic elastic moduli [E] = 0.88 and
[E] = 1.6 for experimental and numerical results respectively. Nevertheless, the corresponding critical
porosity values amount to experimental φC = 1.01 and numerical φC = 1.29 that is clearly nonsense
from the physical reality (Tab. 3, Fig. 5).

Tab. 3: Fit parameters determined for the master curve of the porosity dependence of the elastic modulus
of Alporas and Optinium metal foams using power- and exponential-law models

Alporas Optinium

Relation Fit model [E] φC [E] φC

Archie Er = (1− φ)[E] 2.11 − 2.20 −

Phani-Niyogi Er =
(
1− φ

φc

)[E]φc
2.11 1.01 1.89 0.92

Pabst-Gregorová Er =
(
1− [E]φ+ ([E]− 1)φ2

)
(
1− φ

φc

)

(1−φ) 2.03 1.00 2.08 1.01

Modified exponential Er = exp
(
−[E]φ
1−φ

)
0.88 − 1.37 −

Mooney Er = exp

(
−[E]φ

1− φ
φc

)
1.60 1.29 1.37 1.01

Analogous results have been obtained for Optinium foam with exponential models predicting large
deviations from actual curves representing modulus-porosity dependence of this type of foam. Foam ex-
hibits different relative stiffnesses in directions perpendicular and parallel to compaction direction due to
eccentric spaceholders used during the production process. This kind of pore geometry and macroscopic
material characteristics is essential according to intended usage of this material. PlivioPore implant sys-
tem is indicated for posterior lumbar intercorporeal fusion using osteoconductive titanium implants from
Optinium ensuring excellent both primary and secondary stability. This is primarily achieved by virtue
of rotation principle during embedding of the implant into spinal column. Firstly, the implant is fully in-
serted into the intervertebral disc space using the implant holder and consequently rotated by 90 degrees
to its desired position (Synthes, 2007). Such utilization principle and surgical technique require highest
material stiffness in directions perpendicular to transverse and sagital plane where most loads are trans-
ferred. These material characteristics can be predicted by power-law equations, as in the case of Alporas
(see Tab. 3). Moreover, both exponential-law models are suitable for prediction of modulus-porosity
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dependence of this material with intrinsic elastic moduli [E] = 1.37 and critical porosity φC = 1.01
indicating anisometry of the internal structure due to nonspherical spaceholders.

Table 4 summarizes results obtained by fitting the master curves using Gibson-Ashby’s equations
(Eqs. 8, 9). For Optinium, if one lets vary both fitting parameters freely, optimal master curve character-
izing porosity-dependence of this foam is achieved with α = 1.78 and η = 2.82. This is in contrast with
previous theoretical and experimental works with α = 2.03 and η = 2 according to experimental study
of Dillard (2004) and α = 0.6 and η = 1.6 according to theoretical model of strut bending of Ashby
(2004). Values of constants in these experimental and numerical studies were obtained for nickel-based
open-cell foam indicating that any of the models is not applicable in general and must be adapted to
particular studied material. When η = 2 is considered, the optimal value of α amounts to 1.01 which
is consistent with more detailed structural mechanics analysis of a low density, open-cell, Kelvin foam
with tetrakaidecahedral cells and struts with a Plateau border shape (Warren, 1997). FE simulations of
Kelvin foam lead to prediction of α = 0.98 and comparison with experimental data suggests that α = 1
can be used for a wide variety of open-cell foams. By contrast, application of Gibson-Ashby’s equation
for porosity dependence of elastic modulus for closed-cell foams is limited due to difficulties in deter-
mination of fraction of solid contained in the cell edges. FE simulations of a unit tetrakaidecahedral
closed-cell with flat faces give ϕ = 0.32 for relative densities less than 0.2 (Simone, 1998). For such low
relative densities, the second linear density term dominates, implying that cell face stretching is the more
significant mechanism of deformation in closed-cell foams. Similar simulations on tetrakaidecahedral
closed-cells and Weaire-Phelan closed-cells give ϕ = 0.311 (Kraynik, 1999). Fitting using these values
give optimal constant equal to approximately 1.5 but, as was observed at exponential-law models, com-
parison of fitting curve and numerical results shows diametrically different evolution of the fit model. If
one lets fraction of solid contained in the cell edges vary freely as a additional fitting parameter, master
curve fits the actual modulus-porosity dependence well. Yet, optimal fit model values are C = 2.14 and
ϕ = 1.02 which is nonreasonable value for closed-cell foams corresponding to all of the foam’s solid
contained in the cell edges (Fig. 6).

Tab. 4: Fit parameters determined for the master curve of the porosity dependence of the elastic modulus
of Alporas and Optinium metal foams using Gibson-Ashby’s models

Alporas Optinium

Structure Fit model α η C ϕ

Open-cell Er = α
(
ρf
ρ0

)η
1.78 2.82 − −

Closed-cell Er = Cϕ2
(
ρf
ρ0

)2
+ C(1− ϕ)

(
ρf
ρ0

)
− − 1.03 2.14
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Fig. 5: Evolution of relative elastic modulus plotted against porosity for Alporas showing master curves
determined by fitting using equations listed in Tabs. 3 and 4

Fig. 6: Evolution of relative elastic modulus plotted against porosity for Optinium showing master curves
determined by fitting using equations listed in Tabs. 3 and 4

6. Conclusion

Several exponential- and power-law equations have been introduced in order to obtain a master curve
characterizing as precisely as possible the general trend of the porosity dependence of the elastic moduli.
Predictions given by these mathematical models have been applied to mechanical behavior of Alporas
closed-cell aluminium foam and Optinium open-cell titanium biocompatible foam. Based on the concept
of intrinsic elastic moduli a brief overview of modulus-porosity relations has been given including expo-
nential and power-law expressions as well as Gibson-Ashby’s relations for both types of studied foams,
among them also the relations with critical porosity. It has been shown that for materials with microstruc-
ture types investigated here, both the modified exponential relation and Mooney type relation provide
unsatisfactory predictions of the actual porosity dependence of Alporas. Power-law models proved to be
well suitable for determination of modulus-porosity dependence of both studied foams whereas Gibson-
Ashby’s semi-empirical equations are only suitable for predictions of modulus-porosity dependence of
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Optinium. From the view of computational resources, modulus-porosity predictions assessed by fitting of
aforementioned equations is incomparably simpler than performing sets of FE simulations - irrespective
of direct or indirect microstructural modeling. Experimental verification of modulus-porosity predic-
tions implies custom manufactured samples of cellular materials as both Alporas and Optinium foams
are produced only at 90 % and 65 % levels of porosity respectively.
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Jiroušek, O., Němeček, J., Zlámal, P. (2009), Combining Nanoindentation and Real-Time Tomography for Micro
Finite Element Models of Materials with Complex Inner Structure, Proc. of the 12. International conference on
Civil, structural and environmental enginering computing, Civil-Comp Press, 165-175, ISBN 978-1-905088-
32-4.

Konstantinidis, I.Ch., Papadopoulos, D.P., Lefakis, H., Tsipas, D.N. (2005), Model for determining mechanical
properties of aluminum closed-cell foams, Theoretical and Applied Fracture Mechanics, Vol. 43, 157-167.
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