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Abstract: Coupled heat and moisture transfer is still more often used in many civil engineering problems.
In connection with concrete and plasters, the Künzel model is very popular. Unfortunately, very different
orders of material parameters have devastating influence on the condition number of matrices obtained
after space and time discretization of problems. It results in severe numerical difficulties. This contribution
deals with some strategies leading to better numerical behaviour of the coupled transport processes.

Keywords: coupled heat and moisture transport, Künzel model, condition number, non-symmetric sys-
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1. Introduction

Continuous rapid development of computers enables solution of very complicated and complex prob-
lems. Whereas single-physics problems dominated in the past because of limited computer power,
multi-physics problems have become a standard in recent years. In civil engineering, the multi-physics
problems are usually represented by hydro-thermo-mechanical problems. The coupled heat and mois-
ture transfer is used in connection with concrete ageing, problems in soils and rocks, plaster design,
reconstruction of historical buildings, etc.

In the past, the temperature and moisture distribution in structures was estimated and the temperature
and relative humidity or the water content were assumed as material parameters of mechanical models.
Nowadays, simultaneous analysis of mechanical behaviour together with the temperature and moisture
distribution can be performed.

There are several models of heat and moisture transfer depending whether the convection or diffusion
phenomena prevails. Comprehensive list of models can be found in reference Černý and Rovnanı́ková
(2002). The coupled heat and moisture transfer in buildings or building components is usually described
by the Künzel model which is summarized in section 2.

The material coefficients depend on the actual values of temperature and relative humidity and they
are not constant. It means, the conductivity matrix of material has to be computed in every time step. In
some configurations, the conductivities are very small and it leads to serious numerical problems because
there are zero diagonal matrix entries. In such cases, appropriate degrees of freedom should be removed
from the system and they can be returned back when the conductivities become physically important.

2. Künzel model of coupled heat and moisture transport

In 1995, Künzel proposed in reference Künzel (1995) a model of coupled heat and moisture transfer
suitable for building components.

The Künzel model of coupled heat and moisture transport is based on the relative humidity, ϕ, and
temperature, T . Instead of the relative humidity, water content, w, can be also used but it is generally
non-continuous variable while the relative humidity is always continuous. The continuity of a variable is
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**Ing. Jiřı́ Maděra, Ph.D.: Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical

University in Prague, Thákurova 7; 166 29, Prague; CZ, e-mail: madera@fsv.cvut.cz

m
2012

. 18thInternational Conference
ENGINEERING MECHANICS 2012 pp. 763–774
Svratka, Czech Republic, May 14 – 17, 2012 Paper #214



an advantage in the finite element method. The relative humidity is defined by the relationship

ϕ =
pv

pvs(T )
, (1)

where pv denotes the partial pressure of water vapour and pvs(T ) denotes the saturated water vapour
pressure which depends on the temperature. The water content, w, can be expressed as a function of the
relative humidity, ϕ. The partial pressure of saturated water vapour in the air has the form

pvs(T ) = e
23,5771− 4042,9

T−37,58 . (2)

The vapour diffusion flux density has the form

qv = Dm∇m+DT∇T ≈ Dm∇m = −δ∇pv , (3)

where Dm (kg/m/s) is the mass-related diffusion coefficient, m (-) is the mass fraction of water vapour
related to the total mass of the vapour and air mixture,DT (kg/m/s/K) is the thermo-diffusion coefficient,
T is the temperature, δ (kg/m/s/Pa) is the water vapour diffusion coefficient in air, pv (Pa) denotes the
water vapour partial pressure. The contribution DT∇T is usually negligible and the mass fraction of
water vapour related to the total mass of the vapour and air mixture can be replaced by the water vapour
partial pressure. The water vapour diffusion coefficient in air has the form

δ =
2, 306.10−5

RvT

(
T

273, 15

)1,81

, (4)

where Rv = 461, 5 J/K/kg. Furthermore, in the case of small capillaries, water vapour diffusion resis-
tance factor, µ, has to be introduced and the vapour diffusion flux density has the form

qv = − δ
µ
∇pv = −δp∇pv , (5)

where δp (kg/m/s/Pa) denotes the water vapour permeability. With the help of (1), the vapour diffusion
flux density can be written in the form

qv = −δp∇pv = −δppvs∇ϕ− δpϕ
dpvs
dT
∇T . (6)

Liquid conduction is described by the liquid flux density (kg/m2/s) in the form

ql = −Dw(w)∇w , (7)

where Dw(w) (m2/s) denotes the capillary transport coefficient. The liquid conduction can be also
described by the Darcy’s formula

ql = K1∇pk , (8)

where K1 (kg/m/s/Pa) is the permeability coefficient and pk (Pa) denotes the capillary suction stress.
With the help of Kelvin’s formula, the capillary suction stress can be written in the form

pk = −%wR0T lnϕ , (9)

where ρw (kg/m3) is the density of water and R0 (J/kg/K) denotes the gas constant for water vapour.
Equation (8) can be rearranged into new form

ql = −K1%wR0 lnϕ∇T −K1%wR0T
1

ϕ
∇ϕ ≈ −K1%wR0

T

ϕ
∇ϕ . (10)

The term K1%wR0 lnϕ∇T is significantly smaller than the other and therefore it is usually neglected.
The liquid flux density can be also written in the form

ql = −Dϕ∇ϕ , (11)
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where Dϕ (kg/m/s) is the liquid conduction coefficient. Comparison of (11), (7) and (10) reveals rela-
tionships among the particular material parameters

Dϕ = Dw
dw

dϕ
= K1%wR0

T

ϕ
. (12)

Balance equation for the moisture has the form

∂w

∂t
= −div(ql + qv) + Sw , (13)

where Sw (kg/m3/s) denotes the moisture source or sink. Substitution of (11) and (6) into the balance
equation (13) results in

∂w

∂t
= div

(
Dϕ∇ϕ+ δppvs∇ϕ+ δpϕ

dpvs
dT
∇T
)

+ Sw =

= div

(
(Dϕ + δppvs)∇ϕ+ δpϕ

dpvs
dT
∇T
)

+ Sw . (14)

The time derivate on the left hand side can be further modified

∂w

∂t
=

dw

dϕ

∂ϕ

∂t
= hϕϕ . (15)

Heat transport is described by the well known balance equation

∂H

∂t
=
∂(Hs +Hw)

∂t
= −divqT + Sh , (16)

whereH (J/m3) denotes the total enthalpy,Hs (J/m3) denotes the enthalpy of dry material,Hw (J/m3) de-
notes the enthalpy of material moisture, qT (J/m2/s=W/m2) denotes the heat flux density and Sh (W/m3)
denotes the heat source or sink. The Fourier law has the form

qT = −λ∇T , (17)

where λ (W/m/K) denotes the thermal conductivity of the moist material and T (K) denotes the temper-
ature. The source or sink of heat can be written in the form

Sh = −hvdivqv , (18)

where hv (J/kg) denotes the latent heat of phase change and qv (kg/m2/s) denotes the vapour diffusion
flux density.

With respect to (6), the balance equation has the form

∂H

∂t
= −divqT + Sh = div(λ∇T ) + hvdiv

(
δppvs∇ϕ+ δpϕ

dpvs
dT
∇T
)

=

= div

(
λ∇T + hvδppvs∇ϕ+ hvδpϕ

dpvs
dT
∇T
)

=

= div

(
hvδppvs∇ϕ+

(
λ+ hvδpϕ

dpvs
dT

)
∇T
)
. (19)

Similarly to the mass balance equation, the left hand side can be written in the form

∂H

∂t
=

(
dHs

dT
+

dHw

dT

)
∂T

∂t
=

(
%C +

dHw

dT

)
∂T

∂t
= hTT , (20)

where % (kg/m3) denotes the density of material and C (J/kg/K) is the heat capacity coefficient.
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Let new notation be introduced in the form
(

qϕ
qT

)
=

(
Dϕϕ DϕT

DTϕ DTT

)(
gϕ
gT

)
=

=




Dϕ + δppvs δpϕ
dpvs
dT

hvδppvs λ+ hvδpϕ
dpvs
dT



( ∇ϕ

∇T

)
. (21)

With the new notation, the balance equations have the form

hϕϕ
∂ϕ

∂t
= div (Dϕϕ∇ϕ+ DϕT∇T ) , (22)

hTT
∂T

∂t
= div (DTϕ∇ϕ+ DTT∇T ) . (23)

3. Initial and boundary conditions

The balance equations (22) and (23) are valid in domain Ω which has boundary Γ. The boundary of the
domain Ω is split into parts ΓT , Γϕ, where the Dirichlet boundary conditions are prescribed (prescribed
values), ΓqT , Γqϕ, where the Neumann boundary conditions are prescribed (prescribed fluxes) and ΓNT
and ΓNϕ, where the Newton (Cauchy) boundary conditions are prescribed. The parts ΓT , ΓqT and ΓNT
are disjoint and their union is the whole boundary Γ. The same is valid for the parts Γϕ, Γqϕ and ΓNϕ.

The Dirichlet boundary conditions have the form

ϕ(x, t) = ϕ(x, t), x ∈ Γϕ , (24)
T (x, t) = T (x, t), x ∈ ΓT , (25)

where T (x, t) denotes the prescribed temperature on the part ΓT and ϕ(x, t) denotes the prescribed
relative humidity on the part Γϕ. The Neumann boundary conditions have the form

qϕ(x, t) = qϕ(x, t), x ∈ Γqϕ , (26)
qT (x, t) = qT (x, t), x ∈ ΓqT , (27)

where qϕ(x, t) denotes the prescribed moisture flux on the part Γqϕ of the boundary and qT (x, t) denotes
the prescribed heat flux on the Cauchy boundary conditions part ΓqT . The Newton (Cauchy) boundary
conditions have the form

qϕ(x, t) = βϕ(p(x, t)− p∞(x, t))n, x ∈ ΓNϕ , (28)
qT (x, t) = βT (T (x, t)− T∞(x, t))n, x ∈ ΓNT , (29)

where p∞(x, t) denotes the ambient water vapour pressure and βϕ is the mass transfer coefficient, both
defined in the part ΓNϕ. The pressures are transformed to the relative humidity with the help of relation-
ship (1). T∞(x, t) is the ambient temperature and βT is the heat transfer coefficient, both defined in the
part ΓNT .

Besides the boundary conditions, the initial conditions are prescribed in the form

ϕ(x, 0) = ϕ0(x), x ∈ Ω, (30)
T (x, 0) = T0(x), x ∈ Ω, (31)

where ϕ0(x) denotes the initial relative humidity and T0(x) denotes the initial temperature.
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4. Discretization of the differential equations

The finite element method is used for spatial discretization of the partial differential equations (22) and
(23). The weighted residual statement is applied to the mass balance equation assuming (δϕ) = 0 on Γϕ
and (δT ) = 0 on ΓT . The brackets are used for weight functions (δϕ) and (δT ) because there are some
material parameters denoted by δ.

The mass balance equation multiplied by the test function (δϕ) has the form
∫

Ω
(δϕ)

(
hϕϕ

∂ϕ

∂t
− div

(
Dϕϕ∇ϕ+ DϕT∇T

))
dΩ = 0 (32)

and the energy balance equation multiplied by the test function (δT ) has the form
∫

Ω
(δT )

(
hTT

∂T

∂t
− div

(
DTϕ∇ϕ+ DTT∇T

))
dΩ = 0 . (33)

Applying Green’s theorem, the weak formulation for the mass transfer yields
∫

Ω
(δϕ)hϕϕ

∂ϕ

∂t
dΩ +

∫

Ω
∇(δϕ)Dϕϕ∇ϕdΩ +

∫

Ω
∇(δϕ)DϕT∇TdΩ +

−
∫

Γqϕ∪ΓNϕ

(δϕ)Dϕϕ
dϕ

dn
dΓ−

∫

ΓqT∪ΓNT

(δϕ)DϕT
dT

dn
dΓ = 0 (34)

and the weak formulation for heat transfer
∫

Ω
(δT )hTT

∂T

∂t
dΩ +

∫

Ω
∇(δT )DTϕ∇ϕdΩ +

∫

Ω
∇(δT )DTT∇TdΩ−

−
∫

Γqϕ∪ΓNϕ

(δT )DTϕ
dϕ

dn
dΓ−

∫

ΓqT∪ΓNT

(δT )DTT
dT

dn
dΓ = 0 . (35)

In the finite element method, the temperature T and relative humidity ϕ are approximated in the form

ϕ = Nϕ(x)dϕ , (36)
T = NT (x)dT , (37)

and the gradients of the temperature and relative humidity are also needed

∇ϕ = Bϕ(x)dϕ , (38)
∇T = BT (x)dT . (39)

In the previous equations, Nϕ(x) denotes the matrix of approximation functions for the relative humid-
ity, NT (x) denotes the matrix of approximation functions for the temperature, Bϕ(x) is the matrix of
gradients of the approximation functions collected in the matrix Nϕ(x), BT (x) is the matrix of gra-
dients of the approximation functions collected in the matrix NT (x), dϕ denotes the vector of nodal
relative humidities and dT denotes the vector of nodal temperatures. The approximations of weight
functions have the form

(δϕ) = N (δϕ)(x)d(δϕ) , (40)
(δT ) = N (δT )(x)d(δT ) , (41)

where the notation is similar to the previous one.

Using approximations (36)–(39) in equations (34) and (35), a set of the first order differential equa-
tions is obtained in the matrix form

(
Kϕϕ KϕT

KTϕ KTT

)(
dϕ
dT

)
+

(
Cϕϕ CϕT

CTϕ CTT

)(
ḋϕ
ḋT

)
=

(
fϕ
fT

)
. (42)
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The matrices Kϕϕ, KϕT , KTϕ and KTT create the conductivity matrix of the problem and they have
the form

Kϕϕ =

∫

Ω
BT

(δϕ)DϕϕBϕdΩ, KϕT =

∫

Ω
BT

(δϕ)DϕTBTdΩ, (43)

KTϕ =

∫

Ω
BT

(δT )DTϕBϕdΩ, KTT =

∫

Ω
BT

(δT )DTTBTdΩ , (44)

where the conductivity matrices of material Dϕϕ, DϕT , DTϕ and DTT are diagonal matrices and the
diagonal entries are equal to appropriate conductivities

dϕϕ = Dw
dw

dϕ
+ δppvs, dϕT = δpϕ

dpvs
dT

, (45)

dTϕ = hvδppvs, dTT = λ+ hvδpϕ
dpvs
dT

. (46)

The matrices Cϕϕ, CϕT , CTϕ and CTT create the capacity matrix of the problem and they have the
form

Cϕϕ =

∫

Ω
NT

(δϕ)HϕϕNϕdΩ, CϕT =

∫

Ω
NT

(δϕ)HϕTNTdΩ, (47)

CTϕ =

∫

Ω
NT

(δT )HTϕNϕdΩ, CTT =

∫

Ω
NT

(δT )HTTNTdΩ, (48)

where the capacity matrices of material Hϕϕ, HϕT , HTϕ and HTT are diagonal matrices and the
diagonal entries are equal to appropriate capacities

hϕϕ =
dw

dϕ
, hϕT = 0, (49)

hTϕ = 0, hTT = ρC +
dHw

dT
. (50)

The vectors fϕ and fT contain prescribed nodal fluxes and have the form

fϕ =

∫

ΓqT∪ΓNT

NT
(δϕ)q̂ϕdΓ, fT =

∫

Γqϕ∪ΓNϕ

NT
(δT )q̂TdΓ , (51)

where q̂ϕ denotes the mass boundary fluxes and q̂T denotes the heat boundary fluxes.

5. Numerical solution

From the numerical point of view, coupled problems are described by balance equations which have
the form of partial differential equations. The exact solution cannot be obtained with respect to non-
linearities hidden in the material models. Another obstacle is caused by very general domains which are
solved in real engineering problems. Therefore, numerical methods have to be used.

The balance equations (42) can be written in the form
(

Cϕϕ CϕT

CTϕ CTT

)(
ḋϕ
ḋT

)
+

(
Kϕϕ KϕT

KTϕ KTT

)(
dϕ
dT

)
=

(
fϕ
fT

)
=

(
fϕϕ + fϕT
fTϕ + fTT

)
, (52)

where the vectors fT and fϕ denote prescribed nodal fluxes and they can be further split to two contribu-
tions. The vector fϕ is the sum of vectors fϕϕ and fϕT which represent contributions to the nodal fluxes
caused by temperature changes and humidity changes. The meaning of other contributions is similar.

The system of differential equations (52) can be written more compactly in the form

C(d)ḋ + K(d)d = f , (53)
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where the dependency of the stiffness, conductivity, capacity and coupling matrices on the attained values
of variables is explicitly denoted. ∆d and ∆ḋ denote increments of nodal variables and their time
derivatives.

The system (53) has to be solved by an incremental method. Time discretization is based on the
v-form of the generalized trapezoidal method Hughes (1987) defined by the relationships

dn+1 = dn + ∆tvn+γ , (54)

vn+γ = (1− γ)vn + γvn+1 , (55)

where v denotes the first derivatives of nodal values with respect to time and γ is a parameter from the
range [0, 1]. The subscript n denotes the time step and it serves also as an index in the incremental
method, called the outer iteration loop. It is assumed that all variables are known at the time tn and
variables at the time tn+1 are searched.

Substitution of expressions defined in equations (54) and (55) to the system of differential equations
(53) leads to relationship

(Cn + ∆tγKn)vn+1 = fn+1 −Kn (dn + ∆t(1− γ)vn) , (56)

where Cn and Kn denote the capacity and stiffness/conductivity matrices evaluated with the help of
values dn. The system of algebraic equations (56) is generally non-linear and the Newton-Raphson
method Bittnar and Šejnoha (1996) has to be used at each time step.

The trial solution vn+1,0 of the system of equations (56) is used for computation of the trial nodal
values dn+1,0 which are obtained from equations (55) and (54). Substitution of the trial solution back
to the system of equations (56) with modified matrices does not generally lead to equality. An iteration
loop, called the inner iteration loop, in every time step is based on residual which is computed from the
relationship

rn+1,j = fn+1 −Kn (dn + ∆t(1− γ)vn) (57)
− (Cn+1,j + ∆tγKn+1,j)vn+1,j ,

where Cn+1,j and Kn+1,j denote the matrices evaluated for dn+1,j and j is the index in the inner loop.
Correction of nodal time derivatives are computed from the equation

(Cn+1,j + ∆tγKn+1,j) ∆vn+1,j+1 = rn+1,j (58)

and new time derivatives are in the form

vn+1,j+1 = vn+1,j + ∆vn+1,j+1 . (59)

It has to be noted that the permanent recalculation of matrices K and C with respect to actual nodal
values is very computationally demanding. In such a case, the matrix of the system of equations C(d) +
∆tγK(d) has to be always factorized and it requires additional computational time. The numerical
examples show that the modified Newton method, which changes the system matrix only at the beginning
of a new time step is the best choice. More details can be found in references Kruis and Koudelka and
Krejčı́ (2010) and Kruis and Koudelka and Krejčı́ (2012).

6. Numerical experiments

In order to show possible difficulties, coupled heat and moisture transfer described by the Künzel model
on a rectangular two-dimensional domain is assumed. Rectangular finite elements with bi-linear basis
functions are used. The quadrilateral element contains four nodes and therefore there are eight degrees
of freedom in the case of heat and moisture transfer on each element. The degrees of freedom are located
in vector

dTe = (ϕ1, ϕ2, ϕ3, ϕ4, T1, T2, T3, T4) . (60)
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Tab. 1: Material parameters.

density of material %=16.5 kg/m3

water vapour diffusion resistance factor µ=58 (-)
capillary transport coefficient Dw = 6.2× 10−12 m2/s

dH

dT
= %c

heat capacity coefficient c = 1567

Tab. 2: Thermal conductivity.

0.00000 0.0393
0.00219 0.0423
0.03040 0.0443
0.03968 0.0484
0.06349 0.5130

With respect to the ordering of degrees of freedom in the vector d, the matrix of basis functions has the
form

N =

(
Nϕ 0
0 NT

)
=

(
N1 N2 N3 N4 0 0 0 0
0 0 0 0 N1 N2 N3 N4

)
. (61)

The matrix of partial derivatives has the form

B =




∂ϕ

∂x

∂ϕ

∂y

∂T

∂x

∂T

∂y




=




∂Nϕ

∂x
0

∂Nϕ

∂y
0

0
∂NT

∂x

0
∂NT

∂y




=

(
Bϕ 0

0 BT

)
. (62)

The conductivity matrix of an element has the form

K =

∫

Ωe

BTDB dΩ , (63)

where the matrices B and D are defined by relationships (62) and (21) respectively. Ωe denotes the
element area. The conductivity matrix is assembled from four blocks in the form

(
Bϕ 0

0 BT

)T (
Dϕϕ DϕT

DTϕ DTT

)(
Bϕ 0

0 BT

)
=

(
BT
ϕDϕϕBϕ BT

ϕDϕTBT

BT
TDTϕBϕ BT

TDTTBT

)
. (64)

If the diagonal conductivity matrices of material, Dϕϕ,DTT , are zero or very close to zero, zero or
nearly zero entries appear on the main diagonal of the conductivity matrix of an element and on the main
diagonal of the conductivity matrix of problem.

Let the material parameters summarized in table 1 be used. Table 2 contains the thermal conductivity
which is given by measured data.
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The conductivity matrix of material, D, in the Künzel model is defined in (21). The matrix evaluated
at the beginning of the analysis has the form

DK =




Dϕ + δppvs δpϕ
dpvs
dT

Lvδppvs (λ+ Lvδpϕ
dpvs
dT

)


 =

(
9.895512× 10−9 2.68344× 10−10

2.418454× 10−2 4.013119× 10−2

)
. (65)

There are obvious differences in orders of particular matrix entries. The eigenvalues of the matrix are

λ1 = 9.733798× 10−9 , (66)
λ2 = 4.013119× 10−2 , (67)

and their ratio is

κ = 4.123× 106 . (68)

In order to fix ideas, a plane stress problem is analyzed and compared with the coupled heat and moisture
transport. Let the Young modulus be E = 50 GPa and the Poisson ratio ν = 0.2. The stiffness matrix of
elastic material subjected to plane stress conditions has the form

Dps =




E
1−ν2

Eν
1−ν2 0

Eν
1−ν2

E
1−ν2 0

0 0 E
2(1+ν)


 = 106




52 083 10 417 0

10 417 52 083 0

0 0 20 833


 . (69)

The eigenvalues of the stiffness matrix of the material are

λ1 = 20833× 106 , (70)
λ2 = 41666× 106 , (71)
λ3 = 62500× 106 (72)

and the ratio of the largest and smallest eigenvalues results in the condition number

κ = 3 . (73)

The larger condition number, the worse behaviour of many iterative method and greater cancellation
errors. Comparison of the condition numbers (73) for plane stress and (68) for the coupled heat and
moisture transfer reveals that the transport problem behaves much worse than the plane stress problem.

The conductivity matrix of the whole problem has the following smallest and largest eigenvalues

λ =




0.000000001366664
...

0.085677899281368


 (74)

and the condition number is

κ = 6.269× 107 . (75)

The conductivity matrix of the whole problem has no kernel because there have to be Dirichlet boundary
conditions somewhere on domain boundary.

The generalized trapezoidal rule generates the following matrix Cn + ∆tγKn. The smallest and
largest eigenvalues are

λ =




0.0000669816805
...

132.3215121202840


 (76)
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and the condition number is

κ = 1.975× 106 . (77)

It is slightly better than the condition number of the conductivity matrix of the whole problem K because
the capacity matrix is non-singular and positive definite.

The conductivity matrix of material DK based on the Künzel assumption is populated by entries
with very different order of magnitude. The better moisture insulation, the larger difference in orders of
magnitude. Theoretically, a perfect hydrophobic material leads to zero term dϕϕ = Dϕ + δppvs which
results in a zero row and column in the conductivity matrix of a finite element K. Moreover, there could
be a zero column and row in the matrix of the whole problem which make difficulties for solvers of linear
algebraic systems of equations. In the case of real materials, the diagonal term Dϕ + δppvs is not exactly
equal to zero but it could be very small and rows and columns in the global matrix could be nearly zero.
The condition number of the global matrix is very large in such cases. It causes severe problems to
iterative solvers because the rate of convergence usually depends on the condition number. If a direct
solver is used for such systems of equations, significant cancellation errors could occur.

If materials with extremely small moisture conductivities are used, numerical difficulties may occur
when significant moisture fluxes are presents. Such situation emerges e.g. near boundary where moisture
flux is defined by external conditions. If an insulation material is close to the structure surface, the model
is unable to transport the moisture flux from the exterior into structure. It results in non-balanced fluxes
and the non-linear solver tends to reduce the length of time step. When the time step length is smaller
than reasonable threshold, e.g. 10−3 s, the solver announces problems and it stops. This phenomena is
illustrated in figures 1 and 2. The distribution of relative humidity along the coordinate axis is depicted
in figure 1 while the time behaviour of the relative humidity at point near the external surface is visible
in figure 2. The red line represents the relative humidity for structure with insulation near the surface. It
means, there are extremely small moisture conductivities. On the other hand, the blue curve shows the
relative humidity for structure without an insulation. Another examples can be found in references Kočı́
et al (2012) and Kočı́ et al (2010).

Zero columns and rows can be removed from the system of equations but it is not easy in real
world problems. It is difficult to recognize small value nearly equal to zero because of a hydrophobic
material with extremely small conductivity and small matrix entries caused by inappropriate scale of
variables. The decision which numbers could be removed from the system of equations has to be based
on evaluation of the heat and moisture fluxes. Contributions to the fluxes from particular gradients are
evaluated and they are compared. The moisture flux contains two contributions

qϕ = qϕϕ + qϕT , (78)

where

qϕϕ = (Dφ + δppvs)∇ϕ , (79)

qϕT = δpϕ
dpvs
dT
∇T . (80)

Similarly for the heat flux

qT = qTϕ + qTT , (81)

where

qTϕ = hvδppvs∇ϕ , (82)

qTT = (λ+ hvδpϕ
dpvs
dT

)∇T . (83)

If some of the contributions qϕϕ, qϕT , qTϕ, qTT are significantly smaller than others in the vicinity of
a node, the appropriate variable (temperature or relative humidity) is removed from the node and the
appropriate degree of freedom is removed from the discrete system. This operation represents perfect
barrier and no flux is possible there.
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Fig. 1: Distribution of the relative humidity along the thickness.

Fig. 2: Behaviour of the relative humidity in time at point near external boundary.
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7. Conclusions

Modification of the algorithm for solution of coupled heat and moisture transfer based on the Künzel
model was introduced. It evaluates contributions to the moisture and heat fluxes and it adaptively deals
with the degrees of freedom defined in nodes of finite element mesh. If some fluxes are smaller than
the others, the appropriate degrees of freedom are removed from the system and perfect insulation is
obtained. When material parameters change their values, the degrees of freedom are returned to the
system.
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