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Abstract: The paper describes a new formulation of beam elements for deformational variant of FEM,
which respects non-linear material behaviour. This formulation considers combination of shear and axial
loading and is suitable for short or torque beams similarly to the Timoshenko theory. Non-uniform warping
and influence of transversal contraction are not considered in the formulation. The cross section can be of
arbitrary known shape and composed of more materials. The presented element respect real distribution
shear stress over cross section taking material non-linearity into consideration
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1. Introduction

More economical usage of materials at technical objects is connected with the development of simulation
tools. A similar situation is at beam construction which is abundantly represented in technical practice.
Just use of material non-linearity provides reserves in material usage. Besides that in practice more and
more emphasis is placed on robustness of simulation tools without neccessarity of deep knowledge of
service. Frequent use of some materials makes correct use of linear models impossible, for example
reinforced concrete. For these reasons, based on practical requests of users, the following formulation of
beam element was developed. Geometry of the presented element is shown on fig. 1.
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Fig. 1: Beam element

During making solution about used formulation of the element that should be implemented an exten-
sive research of available formulations in commercial CAE software’s ( Nastran, Abaqus, Marc, Ansys)
was done. All softwares provides a lot of formulations of the beam element including material non-
linearity. Their definition it is possible to find for example here Crisfield (2000),Němec (2010) and
Zienkiewicz (2000). Detail assessment shows that there is provided robust and sufficient solution for
Euler formulation of the element for uniaxial stress in all software’s. But in case of shear stress the situa-
tion is dismal. Here are provided solutions for Timoshenko formulation as well but detail analysis proves
that these solutions are very simplified. For example Ansys provides the element BEAM 188/189. This
element however supposes constant shear strain over cross section and strain corresponding to linear tor-
sion. But real stress distribution at shear loading is different ( for example Grutmann (1999) ). In other

*Ing. Jaromı́r Kabeláč; FEM Consulting, Veveřı́ 331/94; 602 00, Brno, CZ, jaromir.kabelac@seznam.cz

m
2012

. 18thInternational Conference
ENGINEERING MECHANICS 2012 pp. 579–584
Svratka, Czech Republic, May 14 – 17, 2012 Paper #196



CAE software’s the situation is similar. Even literature search did not provide more complex formulation
for material non-linearity.

None of available formulations of the beam element respect real distribution shear stress over cross
section taking material non-linearity into consideration.

Solution of plastic torque is known for long time (for example here Chakrabarty (2006)). Numeric
solution of plastic torque for an arbitrary cross section is defined here Gruttmann (2001). By small
modification the author extend this solution to general shear loading Kabeláč (2011). The model for
axial part of stress is generally known (good description in Crisfield (2000)). By combining of these
solutions we obtain real stress distribution over cross section at arbitrary combination of beam loading.
In that way formulated cross section behaviour is combined with appropriate shape function. Result
of this combination is here presented formulation of beam element, which respects real shear stress
distribution over arbitrary cross section.

Use of various cross section characteristics, specified by an user, increases demands on an user and is
a source of possible mistakes. Therefore we left numerical values as input and the only input is a shape
of cross section or FEM mesh of cross section. On this mesh more materials can be defined. It means
the model is also usable for composite cross section.

The represented model is valid for small strain, straight prismatic beam and free warping of cross
section. The influence of transversal contraction is not considered. In connection to co-rotational formu-
lation its involving in geometric non-linearity is easy.

2. Formulation

The final formulation of beam element with the shear influence and considering of material non-linearity
is connection of following analyses:

1. Distribution of deformations along beam. A classical formulation of beam elements does not
seem to be suitable for this propose. A simplified formulation was used with constant strain along
axis of beam. From here transversal deformations are interpolated by quadratic function and the
other deformations are interpolated linearly.

Ψ = [
dux
dx

,
dφy
dx

,
dφz
dx

,
dφx
dx

, θy, θz]
T ; Ψ = Ξ.u (1)

2. Strain over cross section. In view of the formulation strain over cross section is defined by three
components εx , γxy and γxz the other components are zero. These components are defined by
current unknown warping function w and components of strain along axis of beam.

εi = Bi.wi + Gi.Ψ (2)

3. Calculation of warping function. Based on described process of strain over cross section and
using of equilibrium equations a particular PDE problem can be formulated. Considering used
material model it is a non-linear problem. This problem can be by variational principles trans-
formed to classical non-linear FEM problem over mesh of cross section. The result is an actual
warping function and then stress over cross section.

kF =
elem∑

i

∫

Ωi

BT
i .σ(kεi).dΩi = 0⇒ w (3)

4. Calculation of cross section internal forces V and tangential stiffness matrix of cross section
D. Based on known warping function and stress over cross section it is easy to define final internal
forces and stiffness matrix of cross section.
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V = [Nx,My,Mz,Mx, Vy, Vz]
T =

elem∑

i

∫

Ωi

Gi
T .σi(εi).dΩi ; D =

∂Vi
∂Ψj

(4)

5. Internal forces R and tangential stiffness matrix of beam element K .

R = l.ΞT .V ; Kt = l.ΞT .D.Ξ (5)

2.1. Beam shape function

It is a known and generally widespread solution for Timoshenko beam in linear area. But it is not possible
to find a direct relation between deformation in grid and skew from shear by this solution. For this reason
a simplified formulation was developed. Process of rotation along beam is linear interpolation of rotation
in grid. Shape functions are used here.

η ∈< −1, 1 > (6a)

N1 =
1

2
(1− η) (6b)

N2 =
1

2
(1 + η) (6c)

x = l.N2 (6d)

φz = N1.φ1z +N2.φ2z (7)

It means the element has constant curvature in deformation. In this case bend must be interpolated
by quadratic polynomial.

uy = N1.u1y +N2.u2y + α.Nc (8)

Nc = 1− η2 (9)

Coefficient α is excluded as follows. Skew is obtained from the relation:

θz = −φz +
duy
dx

(10)

To avoid shear locking of the element, the skew must be constant.

dθz
dx

= 0 (11)

By solution of this equation it is excluded parameter α and for skew and transversal deformation is
valid:

uy = N1.u1y +N2.u2y −
L

8
(φ2z − φ1z).Nc (12)

θz =
1

L
(u2y − u1y)−

1

2
(φ1z + φ2z) (13)

It remains to express the relation between deformation in grid and strain of beam by transforming
into 3D:
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Ψ =




dux
dx

dφy
dx

dφz
dx

dφx
dx

θy

θz




=
1

l




u2x − u1x

φ2y − φ1y

φ2z − φ1z

φ2x − φ1x

−u2z + u1z − l
2 (φ2y + φ1y)

u2y − u1y − l
2 (φ2z + φ1z)




= Ξ.u (14)

In that way formulated element has a great advantage which lies in a fact that strain of beam are
constant.

2.2. Strain over cross section

In accordance with St’Venant theory free warping is occurring over cross section. Free warping is defined
by currently unknown warping function w. Examples of warping functions are shown on fig. 2 for
different shear loading.

torque shear shear

Fig. 2: Example of warping function on I - profile

For strain over cross section it could be written.

ε =




εx

γxy

γxz


 =




∂ux
∂x

∂ux
∂y +

∂uy
∂x

∂ux
∂z + ∂uz

∂x


 =




dux
dx + z

dφy
dx − y

dφz
dx

∂w
∂y + θz − z dφxdx
∂w
∂z − θy + y dφxdx


 (15)

Interpolation of warping function w by shape functions over mesh of cross section pursuant to FEM
principles is used. Warping function is clearly defined by values in grids of mesh wi. If B is derivation
matrix of shape function, than for strain it is possible to write:

ε = B.w + G.Ψ (16)

G =




1 z −y 0 0 0

0 0 0 −z 0 1

0 0 0 y −1 0


 (17)

2.3. Derive warping function

In the paper Kabeláč (2011) there was described analysis how to define warping function w by FEM :
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Ω :
∂σx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

= 0 (18a)

Γ : τxy.ny + τxz.nz = 0 (18b)

In view of the formulation of the element the first derivation is zero. By using of variational principle
and FEM principles the problem is transformed into system of non-linear equations.

F =
elem∑

i

∫

Ωi

BT
i .σ(εi).dΩi = 0⇒ w (19)

KF =
∂Fi
∂wj

(20)

These equations are supplemented by conditions for warping function.

N =

∫

Ω
w.E.dΩ = 0 (21a)

My =

∫

Ω
z.w.E.dΩ = 0 (21b)

Mz =

∫

Ω
−y.w.E.dΩ = 0 (21c)

Which can be written down as:

L.w = 0 (22)

Here arbitrary material model can be used and defined as follows:

σ = f(ε) (23)

Dm =
∂fi
∂εj

(24)

The result is warping function defined by values in grid of mesh wi for actual deformations Ψ. More
details in Kabeláč (2011).

2.4. Internal forces and tangential stiffness matrix of cross section

To express searching warping function w it is possible to express internal forces of cross section by
simple relation.

V =
elem∑

i

∫

Ωi

Gi
T .σi(εi).dΩi (25)

Where εi is expressed by relation (16). It remains to express tangential stiffness matrix of cross
section D, whih is obtained by derivation of relation (25) according to Ψ.

D =
∂Vi
∂Ψj

=

elem∑

i

∫

Ωi

Gi
T .Dm. (Gi + Bi.dwi) .dΩi (26)
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dw =
∂wi
∂Ψj

(27)

Derivation w according to Ψ is a result of solution of system of linear equations.

[
KF L
LT 0

]
·
[
dw
−λ

]
=

[
H
0

]
(28)

H =
elem∑

i

∫

Ωi

Bi
T .Dm.Gi.dΩi (29)

2.5. Internal forces and tangential stiffness matrix of beam

One last step is necessary to make. Because strain Ψ is constant along axis of beam for internal forces
in grids of beam element is valid.

R =

∫ l

0
ΞT .V.dx = l.ΞT .V (30)

And for tangential stiffness matrix of beam:

K =

∫ l

0
ΞT .D.Ξ.dx = l.ΞT .D.Ξ (31)

3. Conclusions

The element presented here is robust enough for practical use. Cross section can have arbitrary origin
point. It can be composed of more materials and the formulation is independent on material model. A
disadvantage of the element is neglecting of non-uniform warping especially in prevailing shear loading.
The element will be tested in future and it is supposed to be implemented in commercial CAE software.
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