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Abstract: The article deals with the numerical solution of transitional flows. The single point k-kL-ω
model of Walters and Cokljat (2008) based on the use of a laminar kinetic energy transport equation is
considered. The model doesn’t require to evaluate integral boundary layer parameters (e.g. boundary
layer thickness) an is therefore suitable for implementation into codes working with general unstructured
meshes. The performance of the model has been tested for the case of flows over a flat plate with zero and
non-zero pressure gradients. The results obtained with our implementation of the model are compared to
the experimental data of ERCOFTAC.
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1. Introduction

The laminar-turbulent transition plays very important role in many flows of engineering interest. It has
big impact on the heat transfer and losses. Unfortunately most of the state-of art turbulence models (e.g.
Menters SST k−ω model, EARSM model of Hellsten) completely fail with the prediction of transition.
However there are some attempts to modify basic models (e.g. low Reynolds model of Wilcox (1998),
TSL model of Zheng et al. (1998)) with promising results, the experience shows that this approach is not
capable of reliably capturing all factors that affect transition, see Menter et al. (2006).

The algebraic models based on empirical correlations (see e,g, Straka and Přı́hoda (2010)) offers
simple approach with sufficient accuracy. On the other hand the implementation into a general unstruc-
tured code is quite difficult due to necessity of some non-local information (momentum boundary layer
thickness, intermitency at wall, etc.). Therefore the applicability of these models is more-less limited to
research/academic codes using structured meshes.

This article deals with the RANS-based transitional model developed by Walters and Cokljat (2008).
The three-equation model is based on the low Reynolds k − ω model with an equation for the so called
laminar kinetic energy kL expressing the energy of stream-wise fluctuations in pre-transitional region.
The main advantage of the model is its local formulation, it means that it can be easily implemented
into unstructured solvers. Moreover it can (at least in principle) handle flows in complex geometry.
Unfortunately the description of the model in Walters and Cokljat (2008) contains some errors (probably
typos) which lead to strong underestimation of the friction in turbulent region. The aim of the aritcle is
to show the correct version of the model and to test the performance of the model for simple flows over
flat plate.
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2. Mathematical model

2.1. Navier–Stokes equations

The viscous compressible flows is described by the set of Favre–averaged Navier–Stokes equations:
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where ρ is the density, ui are the components of the velocity vector, p is the static pressure, E is the
specific total energy, h = E + p − uiui/2 is the specific enthalpy, tij is the mean viscous stress tensor,
τij = −ρu′iu′j is the Reynolds stress tensor, µ is the viscosity, Pr is the Prandtl number, and αθ is the
turbulent thermal diffusivity.

We assume perfect gas (the air) with p = (κ − 1)(ρE − ρuiui/2) where κ = 1.4 is the constant
specific heat ratio. The flow is Newtonian with constant viscosity µ, hence tij = 2µ(Sij− 1

3Sllδij) where
Sij = (∂ui/∂xj + ∂uj/∂xi)/2.

2.2. Turbulence model

The turbulence model is based on the Boussinesq hypothesis

τij = 2ρνT (Sij −
1

3
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3
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where νT is the turbulent kinematic viscosity and k is the turbulent kinetic energy.

We assume a three equation model of Walters and Cokljat (2008) with the transport equations for the
turbulent kinetic energy kT ,the laminar kinetic energy kL, and the turbulent frequency ω. The equations
are

D(ρkT )

Dt
= ρ(PkT +RBP +RNAT − ωkT −DT ) +

∂

∂xj

[(
µ+

ραT
σk

)
∂kt
∂xj

]
, (5)

D(ρkL)

Dt
= ρ(PkL −RBP −RNAT −DL) +

∂

∂xj

[
µ
∂kt
∂xj

]
, (6)

D(ρω)

Dt
= ρ

[
Cω1

ω

kT
PkT +

(
CωR
fW
− 1

)
ω

kT
(RBP +RNAT )− Cω2ω

2

+Cω3fωαT f
2
W

√
kT
d3

]
+

∂

∂xj

[(
µ+

ραT
σω

)
∂ω

∂xj

]
. (7)

The various terms in the equations represents production, destruction, transport, and diffusion. How-
ever the structure of the model is more-less clear, there is a confusion in the definition of individual
terms in the literature. The original Walters and Leylek’s model (see Walters and Leylek (2004)) uses
kT − kL − ε formulation. The model was later re-formulated using kT − kL − ω (see Walters and
Leylek (2005) or Holloway et al. (2004)) and the current version was published in Walters and Cokljat
(2008). Unfortunately it seems that the last article contains some errors. Therefore we will write here all
individual terms and we will comment the differences of our version with respect to the original article.

The production of turbulent and laminar kinetic energy is

PkT = νT,sS
2, (8)

PkL = νT,lS
2, (9)

where S =
√

2SijSij . The “small-scale” eddy viscosity is defined as

νT,s = fνfINTCµ
√
kT,sλeff , (10)
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where kT,s is the effective small-scale turbulence

kT,s = fSSfWkT . (11)

The wall-limited turbulence length scale λeff and damping function fW is

λeff = min(Cλd, λT ), (12)
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) 2
3

, (14)

here d is the wall distance. Note that the article Walters and Cokljat (2008) does not include the exponent
2/3 in the definition of fW . The original model Walters and Leylek (2004) as well as the Walters and
Leylek (2005) do include the exponent. The origins of the 2/3 exponent come from the k−ε formulation
where the turbulent integral length scale is

λT =
k

3
2
T

ε
, (15)

therefore fW actually limits the length scale to λeff .

The following terms are according to Walters and Cokljat (2008)
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The intermitency factor fINT is
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)
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Note that the factor fINT is defined with kL in nominator in Walters and Cokljat (2008), but the article
Walters and Leylek (2005) gives correct form with kT .

The production of laminar kinetic energy kL is assumed to be given by large-scale near wall turbu-
lence

kT,l = kT − kT,s. (21)

The production term is then given by the equation (9) where
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The dissipation εTot is divided to an isotropic (kTω) and anisotropic (DT/L) part (similarly as in the
low Reynolds Launder and Sharma k − ε model) with
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∂
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However the the balance between the dissipation εTot and diffusion ∂
∂y

(
ν
∂kT/L

∂y

)
in the laminar sublayer

suggests the same formula multiplied by 2 (see e.g. Launder-Sharma k − ε model or the older versions
of k − kL − ε and k − kl − ω) model, the above mentioned form was proposed in the new model and
used in our calculations.

The turbulent diffusivity αT is

αT = fνCµ,std
√
kT,sλeff , (28)

and the damping function fω is

fω = 1− exp
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]
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The remaining terms RBP and RNAT express the laminar-turbulent transition in terms of the energy
transfer from kL to kT . They are of the form

RBP = CRβBPkLω/fW , (30)
RNAT = CR,NATβNATkLΩ. (31)

The bypass transition is driven by the βBP function
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and the natural transition by the βNAT function
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The turbulent kinematic viscosity used in the momentum equations is then

νT = νT,s + νT,l. (37)

The turbulent thermal diffusivity αθ is then

αθ = fW
kT

kT + kL

νT,s
Pr

+ (1− fW )Cα,θ
√
kTλeff . (38)

The coefficient Cω2 = 0.92 is constant in the original article. Nevertheless the correct form is

Cω2 = 0.92f2
W . (39)
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case U [m s−1] kT [m2 s−2] ω[s−1] Tu[%] µT,std/µ[−]
T3A 5.4 0.047 63 23.8 3.30 12
T3B 9.2 1.128 27 56.8 9.43 120
T3A- 19.8 0.048 57 23.8 0.91 12
T3C2 5.5 0.055 58 35.0 3.50 10

Tab. 1: Inlet conditions for flat plate calculations at x = −0.05 m, here µT,std := Cµ,stdρkT /ω.

The other constants are

A0 = 4.04 CINT = 0.75 Cω1 = 0.44
AS = 2.12 CTS,crit = 1000 Cω3 = 0.3
Aν = 6.75 CR,NAT = 0.02 CωR = 1.5
ABP = 0.6 Cl1 = 3.4 · 10−6 Cλ = 2.495
ANAT = 200 Cl2 = 10−10 Cµ,std = 0.09
ATS = 200 CR = 0.12 Pr = 0.85
CBP,crit = 1.2 Cα,θ = 0.035 σk = 1
CNC = 0.1 CSS = 1.5 σω = 1.17

CNAT,crit = 1250 Ctau,l = 4360

3. Simulation of flows over a flat plate

The model has been validated using T3 series of experimental flat plate test cases of ERCOFTAC. The
T3A, T3B, and T3A- test cases had zero stream-wise pressure gradients with free-stream turbulence of
3%, 6%, and 1% respectively Coupland (1990a). The T3C2 has favorable pressure gradient in the first
part of the plate followed by the adverse pressure gradient in the second part, see Coupland (1990b).

The calculation was carried out with OpenFOAM package with our implementation of the k−kL−ω
model. The numerical solution was obtained with finite volume method using SIMPLEC scheme for
compressible flows (see eg. Ferziger and Perić (1999)).

The zero-pressure gradient cases (i.e. T3A, T3A-, and T3B) were calculated using a rectangular
domain Ω = [−0.05, 2.9] × [0, 0.175]m where the flat plate starts at x = 0m. The mesh consists of
635×105 cells where 600 cells were at the plate and 35 cells in the inlet region. The mesh was refined in
the vicinity of the inlet edge (see fig. 1) and in the wall normal direction with y1 ≈ 10−5m i.e. y+ ≤ 1.

The following boundary conditions were prescribed:

inlet: at the inlet plane (x = −0.05 m) we prescribe the velocity vector ui, the temperature (T =
293.15 K), the turbulent kinetic energy kT , the laminar kinetic energy kL = 0 m2 s−2, and the
specific dissipation rate ω. The pressure is calculated with the homogeneous Neumann condition
∂p/∂n = 0.

wall: at the wall (x = 0 m to 2.9 m and y = 0 m) we prescribe non-slip condition for velocity (ui =
0 m/s), the homogeneous Neumann condition for pressure ∂p/∂n = 0, zero turbulent and laminar
kinetic energy kT = kL = 0 m2 s−2, and the homogeneous Neumann condition for the specific
dissipation rate ∂ω/∂n = 0.

outlet: at the outlet (x = 2.9 m) we prescribe the static pressure p = 101 kPa and we use homogeneous
Neumann conditions for all remaining quantities.

symmetry: at the rest of the boundary (the upper boundary at y = 0.175 m and the lower boundary in
front of the plate) we assume symmetry condition for all variables (i.e. the slip condition).

We use constant dynamic viscosity µ = 1.8× 10−5 Pa s and the ideal gas constant R = 287 J kg−1 K−1.
The parameters of inlet flows are are given in the table 1.

The figure 1 shows comparison of computed skin friction for T3A and T3B case with the experimen-
tal data of ERCOFTAC. One can see that the ready-made implementation of the model (labeled by OF
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Fig. 1: Friction coefficient for zero-pressure gradient flows over a flat plate (ERCOFTAC T3A, T3B, T3A-
cases).

2.1.0 at the figure) fails even with T3A case. On the other hand our implementation of corrected model
gives quite good agreement with experimental data form ERCOFTAC database. The results show that
the transition onset is very well captured in T3A and T3A- cases. In the T3B case with high turbulence
intensity the transition seems to be shifted little bit upstream.

For the non-zero pressure gradient case (T3C2) we use

For the flow with pressure gradient (T3C2 case) we assume a domain with shaped upper boundary
(see fig. 2). The shape was constructed in order to match the velocity distribution in the ERCOFTAC
experiment. Fig. 2 shows the comparison of experimental data with the calculated velocity distribution
at y = 0.05 m. The calculated skin friction coefficient** shows that the model predicts the transition
onset to late. On the other hand the transition length is underpredicted, so the position of transition end
is captured at right position.

4. Conclusion

The results indicate that the model of Walters and Cokljat (2008) is able (after all necessary corrections
with respect to the original article) to predict the laminar-turbulent transition for simple flows over flat
plate. Future work will be oriented to the implementation of the model to our in-house code and to its
applications for flows in turbine cascades.

**The cf as well as the Reynolds number Rex was related to local velocity magnitude U0.05(x) at y = 0.05m.
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Fig. 2: Domain, the velocity at y = 0 05m and the friction coefficient for T3C2 ERCOFTAC cases.
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