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COMPARISON OF IMPLICIT-GRADIENT DAMAGE-PLASTIC
MODELS

M. Hor ak”*, M. Jir asek™

Abstract: Damage mechanics coupled with the theory of plasticity isitable framework for description
of the complex behavior of materials such as concrete [Grass Jirasek (2006)], steel [Engelen, Geers
and Baaijens (2003)], or bone [Charlebois, 8sek and Zysset (2010)]. However, the classical theory fail
after the loss of ellipticity of the governing differenteduation. From the numerical point of view, loss
of ellipticity is manifested by the patholocical dependeatthe results on the size and orientation of the
finite elements. This paper describes two different fortiara of coupled damage-plastic models, and their
nonlocal enhancements based on the implicit gradient eggro The difference between the formulations
is discussed and illustrated by a numerical example.
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1. Introduction

This paper presents coupled damage-plasticity modelstir@mm damage mechanics is suitable for the
description of stiffness degradation due to the growth éécs such as micro-voids and micro-cracks,
while plasticity theory describes permanent deformatifres material induced e.g. by slip mechanisms.
However, standard damage-plasticity models with softggmould lead to a pathological sensitivity of
the numerical solution, converging to physically meargésglresults. In this contribution, two different
ways of coupling damage with plasticity are considered, amdethod that can provide an objective
description of localized inelastic processes is described

2. Plasticity

The main feature of plasticity models is irreversibilitypstic strain. We restrict our attention to the as-
sociative plasticity with isotropic hardening or softegiunnder small strain. The basic equations include
an additive decomposition of the total strain into an eta@tversible) part and a plastic (irreversible)

part,

E =E&;¢ + €p7 (1)
the stress-strain law,
o=D,:e., (2)
the definition of the yield function
flo, k) =d(o) — oy (k) ®)
loading-unloading conditions in the Kuhn-Tucker form,
f(O',KZ)SO AZO ).‘f(o-a’%):oa (4)
flow rule as the evolution law for plastic strain
. Of
&p=Ag (5)
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evolution law for cumulated plastic strain,

k= \/€p:Ep, (6)

and the isotropic hardening (softening) law, describedheyftinctionoy (x) that is embedded in the
definition of the yield function (3). In the equations abowe,s the stress tensol). is the elastic
stiffness tensofG is a seminorm of the stress tensdiis the plastic multiplierx is the cumulated plastic
strain andry is the current yield stress. An overdot marks the derivatiltk respect to time. To describe
the behavior of a specific material, a concrete form of thesstseminorm has to be introduced. In the
subsequent chapters, we will use the Mises yield conditidnich belongs to the most used yield criteria

and defines the stress seminorm as

glo) = gs ] )

wheres is the deviatoric part of the stress. Note that for Misestjgig yielding has a purely deviatoric
character.

2.1. Implementation

To implement the constitutive model into a displacemeitedr finite element code, an algorithm for
the evaluation of the stress increment from a given strairement must be developed. This procedure
is usually called the stress-return algorithm. The stregsrm algorithm is based on the elastic-plastic
operator split, which consists of a trial elastic predidtmiowed by the return mapping algorithm. In the
first step, the trial stress

s =2G (e”+1 — e;l) (8)
is computed. Here(s is the shear modulus of elasticity ands the deviatoric part of the strain. If the
trial stress satisfies the condition of plastic admisgipili’(o*", ™) < 0, the step is elastic and the trial
stresso!” is accepted as the actual stress!. If the trial stress violates the yield condition, the step
is plastic and the return mapping algorithm has to be usede We describe the so-called radial-return
algorithm [Krieg and Key (1976)], which represents a ragiajection of the trial stress onto the yield
surface. The formula fos™*! has the following form:

sl = st — 2GAe, 9)

After using the discrete version of equation (5) in comboratvith equation (9), we arrive at
n+1

s" = s _ BGAR—— (10)
[s™ |

Clearly,s"*! ands!" are colinear, thus
Sn+1 St’r‘

lsm 2 s

(11)

Substituting (11) into (10), the radial mapping of the tgakss onto the yield surface is obtained:
sn+1 _ <1 o \/EGA'%> STL-‘rl (12)

sn+1

Moreover, the yield criterion must be fullfiled at the endoé step:
f(s" K"+ AR) =0 (13)

Substitution equation (12) into (13) leads to one nonlireealar equation foAx. For linear hardening
plasticity, in the formoy (k) = oo + Hk, this equation is reduced to a linear equation, Andcan be
obtained directly as

ftr
SaTeRy )

wheref'" = f(s'", k"), H is the plastic modulus, ang} is the initial yield stress.
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3. Coupling of damage and plasticity

In this section, a brief description of the continuum danragehanics and its coupling with the plasticity
theory is discussed, see [Maugin (1992)] for more detaite iSotropic damage mechanics is considered,
which means that one single scalar damage variable is inteatl The damage variable describes the
reduction of stiffness and strength of material due to tleation, coalescence and growth of voids and
microcracks. There exists at least two ways of coupling thstjeity theory to the damage mechanics.
The first approach is based on the formulation of the plagtmioblem in the effective (i.e. undamaged)
stress space. The second approach relies on the plasticityfated in the nominal (i.e. damaged) stress
space. For both approaches, the stress-strain law hasrthe fo

c=(1-wjo=(1-w)D.: (e —¢p) (15)

whereg is the effective stress andis the damage variable that ranges from zero (virgin mdjéd@ane
(completely damaged material).

For the model based on effective stress, equations (2)+&jedormulated in the effective stress
space

o =D.:(e—gp), (16)
f(5,5) =5(6) — ay(r), (17)
f(a,k) <0  A>0 Af(a,r) =0, (18)
_9f
p =5 (19)
Moreover, the damage law is heeded. Usually it is postulased
w = g(k) (20)

For the second group of models, all equations are formuiatéerms of nominal stress. However, this
formulation can be rewritten in terms of the effective stresd the hardening (softening) function would
by given by .

_ Y

W T =g &
In the first case, the evolution of damage and the effectiglel\dtress is prescribed, while in the second
case the evolution of the nominal yield stress and damageegxpbed. Since the nominal stress is di-
rectly available from the stress-strain diagram, it mayib®ker to describe it directly and then consider
the effective yield stress as a derived quantity. The maaiedully equivalent; however, it is neccesary
to pay attention when constructing the nonlocal extendiwmlocal extension of both classes of models
will be described in the next chapter.

3.1. Implementation

Implementation of the formulation based on the effectivesst is very similar to the implementation of
pure plasticity and consist of the return mapping algoritbliowed by the explicit evaluation of damage.
To implement a damage plastic model based on the nominakstiee formula for the trial stress has to
be changed to

s = (1-w")2G (e”+1 —ep) (22)

Again, if the trial stress satisfies the yield condition, step is elastic and the trial stress is accepted as
the actual stress. If the trial stress violates the yieldd@@mn, the step is plastic and the return mapping
algorithm has to be used. The formula & reads

s = s~ 2GAw (e — el!) — (1 — w")2G Aen (23)

N . . 1 —w"
After substitution of (5) into (23), multiplication of theesond term byﬁ, and some algebra, we

get
ni1 L — whtl . ) JEGA g+l 04
=T — (1 =w")V6 R7||Sn+1|| (24)
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Obviously,s™*! ands!" are colinear; therefore, we arrive at the radial return mapping of the trial stress
onto the yield surface:

_ .o n+1 _ o n+1
Sn+1 _ (1 w (1 w >\/6GA’%> Str (25)

L—wr 8%l

Combining the yield criterion (13) with (25) leads to one scalar nonlinear equation

3 <1—w(/<c”+Af<a)

2 1 —w(k")

5 || — (1 — w(k"+ Af@))\/gGAFc) —oy(K"+Ak) =0 (26)

with Ak as the unknown. This equation can be solved iteratively, for example by the Newton method.

4. Implicit-gradient regularization

In the previous section, two formulations coupling damage mechanics to the theory of plasticity were
described, and their numerical implementation was presented. Now we focus on the regularization of the
coupled damage-plastic models by the implicit-gradient formulation, with nonlocal cumulated plastic
strain. In the regularized implicit-gradient formulation, the constitutive equations are enhanced by the
nonlocal cumulated plastic strain, which is computed from a Helmholtz-type differential equation

E—1*V*k=r (27)

with homogeneous Neumann boundary condition

OR
— =0. 2
5~ 0 (28)

In the equations abovéjs a length scale paramet&,is the Laplace operator, andis an outer normal.

To regularize the constitutive model properly, attention must be faaits localization properties.
For the local model, localization can occur if the tangent plastic modulus, i.e., the derivasiyevdth
respect tox, becomes equal to or less than the critical valjederived by the localization analysis
based on the acoustic tensor [Ottosen and Runesson (1991)]. For a model with an associated flow rule,
this critical value is never positive. Therefore, localization cannot happen before peak, but at peak or
after peak it may occur. It can be shown that a nonlocal model provides a proper regularization (nonzero
width of the localized process zone and nonzero dissipation) if the derivative of the nominal yield stress
with respect to the locat, denoted agi;, remains abovéi.. To be on the safe side, we would like to
keepH positive, becausél. < 0.

For instance for a model with
oy = oy (F) (29)

we haveH = 0 and there is a danger of localization into an arbitrarily thin layer. This is the so-called
basic nonlocal plastic model, which can be improved by the overnonlocal formulation, with

oy = oy (k) (30)
where
k=mk+(1-m)k (31)

is the overnonlocal variable. In this cagé;, = (1—m)o}, whereo!, is the derivative ofry with respect
to its argument. If the nominal yield stress is decreasing, we ffave 0 and then the conditiof/;, > 0

is satisfied forn > 1. However, this formulation fails i#{- is changing from positive to negative values
(first hardening, then softening), because the condifign> 0 cannot be satisfied in both ranges with
the same constamt.

The standard nonlocal formulation of a damage-plastic model is based on

oy = (1 —g(&))oy (k) (32)
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The local plastic modulus is given by
Hy = —(1—=m)g'ay + (1 —g)ay (33)
and the conditior;, > 0 translates into

(1—-m)d'ay

-~ (34)

oy >

wheregy, is the derivative of functiorwy with respect to its argument and corresponds to the plastic
modulus of the elastoplastic model without damage. Theitonccan be satisfied at least in two ways:

e usingay > 0 andm = 1, which is the formulation with the usual nonlocal variabtedavith
hardening elastoplastic part, see [Grass| and Jiras€l6jR0

e usingay > 0 andm > 1, which is the overnonlocal formulation with an elastogagiart that
can contain a plateau (perfect plasticity without hardghlout must not soften, see [Charlebois,
Jirasek and Zysset (2010)].

Localization capabilities of different implicit-gradieformulations will be explored in the next chapters
by a representative numerical example.

4.1. Implementation of implicit gradient model

The implementation of the implicit gradient formulatiorbiased on mixed finite elements. We start from
the strong form of the set of governing differential equasio

V-o=0 (35)
e (36)

Following the standard procedure, equations (35) and (&6)egcast in the weak form,

/(V-J)-ndwzo (37)
\%
/V(n — *’V?R)n da = /vm dx (38)

wheren andn are suitable test functions. The displacements and th@caintumulative plastic strains
are approximated at the element level by

where N and Nz are matrices containing the shape functions drashdd are vectors with the corre-
sponding degrees of freedom (nodal displacements and matieds of the nonlocal cumulated plastic
strain). After discretization, we obtain the set of nondinalgebraic equations

f int f ext
= (40)

¢int 0

in which f;,, and f,,, are the standard internal and external forces @nd = [, (NZNzd +
?’BIB:d; — xkNL) dx are generalized internal forces. The set of nonlinear énsis solved by
the Newton-Raphson iteration scheme. This humerical ndetbquires a tangent matrix, which is ob-
tained by differentiating the internal force vector witlspect to the nodal unknowns:

6fint 8fznt
od ody,
K = (42)
6¢int 8¢znt
od ody,
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Fig. 1. Uniaxial tension test: Geometry and Loading

where

O ins :/(1—w)BTaaBd OF nt :—/ L BTN, da

od 0 ad,g dk
8¢int T 80 a¢znt / T 80N 2 pT
N - — N— 1 NE B— BE
od / " e D od= ), \VF U ok + "By B ) de

. . - N .00
In the equations abovd3? and B are matrices containing derivatives of the shape functigascor-

€
responds to classical elasto-plasto-damage stiffnesfuactionsé,, is supplied by the return mapping
algorithm.

5. Numerical example

Simulation of a one-dimensional bar in tension is carriedtowdemonstrate regularization properties
of different implicit-gradient formulations of plastigitcoupled to isotropic damage. Geometry of the
problem is plotted in Fig. 1, the material and geometricahpeeters are summarized in Tab. 1. Influence
of the nonlocal formulation on the profile of damage alonglieis studied. Isotropic linear hardening

of the effective yield stress and exponetial evolution ohdge is considered:

oy =00+ Hk (42)
w=1—e (43)

This yields to the nominal stress in the form
oy = (1 —e ) (oo + Hk) (44)

At first, the over-nonlocal regularization based on norllazanage is considered, i.e. = g(k). In
this approach, the nonlocal cumulated plastic strain tffenly the damage variable, while plasticity is
formulated in the effective stress space and thereforeinsn@cal. The advantage of this approach is in
a simple implementation based on the local return mappggyighm followed by an explicit evaluation
of the damage variable. The second class of models condidene is based on the over-nonlocal
averaging of the nominal yield stress, = oy (%). Fig. 2 and Fig. 3 show the distribution of damage
along the bar for different stages of loading for the firstrapph and the second approach, respectively.
Finally, Fig. 4 compares the distribution of the damagealag obtained by the formulation based on the
effective stress and by the formulation based on the norsiness.

6. Conclusions

We have presented two formulations coupling plasticityhwdmage, and introduced two different
implicit-gradient regularization schemes which lead taajective description of localized failure pro-
cesses. We have shown that even if the local models are fyliwaent, the nonlocal formulation can
lead to substantially different results; therefore it i€cesary to pay attention when constructing the
nonlocal extension. Further research will focus on the ammspn of the computational efficiency of
both models, and on extensions of the gradient regulavizati more general yield conditions.
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Length of bar L 100 mm
Length of imperfection S 20 mm
Cross-sectional area A 100 m
Young's modulus E 20 GPa
Isotropic hardening law oy =00+ Hk

Initial yield stress 00 2 MPa
Initial yield stress (imperfection)| og 1.8 MPa
Hardening modulus H 600 MPa
Damage law w=1—exp
Dimensionless damage parameter 300
Characteristic length [ 5mm

Tab. 1: Uniaxial tension test. Geometrical and material pareters

Fig. 2: Evolution of damage profile for formulation 1

I L | | L I
O0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/L

Fig. 3: Evolution of damage profile for formulation 2
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Fig. 4. Comparison of damage distribution
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