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Abstract: We consider acoustic wave propagation described by Helmholtz equation and involving homog-
enized transmission conditions imposed along a thin perforated interface separating two halfspaces occu-
pied by the acoustic medium. The homogenized transmission conditions are imposed on this perforated
interface. The transmission conditions were obtained as the two-scale homogenization limit of the standard
acoustic problem imposed in the layer perforated by a sieve-like obstacle with periodic structure. By using
the sensitivity analysis we can solve the problem of an optimal design of the perforation to minimize the
transmission loss in a domain embedding the interface. The perforated periodic structure is represented by
a reference computational cell, whereby its geometry is controlled by the spline functions.
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1. Introduction

Optimization of noise transmission in the acoustic fluid belongs to important merits of the acoustic engi-
neering. Sieve-like structures are classical elements employed in noise-reducing devices. For example,
in the exhaust silencers of the combustion engines the gas flows through ducts equipped with various
sieves which in part may influence the transmission losses associated with acoustic waves propagating
in the exhaust gas. In aerospace and automotive industry there are many applications related to acoustic
waves and fluid flow where optimal design of the sieves (perforated slabs) is a challenging problem.

In the paper we deal with the acoustic transmission through a perforated interface, cf. Chen (1996);
Bonnet-Bendhia and others (2005). The transmission conditions to be imposed on the interface plane
were derived in Rohan and Lukeš (2010), using the asymptotic analysis. The limit model of an inter-
face plane involves some homogenized impedance coefficients depending on the so-called microscopic
problems; these are imposed in the reference periodic cell embedding an obstacle which represents the
perforation. The two-scale modeling approach allows for an efficient treatment of complicated designs
of perforations. The limit model was subjected to the sensitivity analysis in Rohan and Lukeš (2009). It
resulted in the sensitivity formulas for the homogenized coefficients and we obtained the total variation
of an objective function depending on the acoustic pressure w.r.t. the obstacle shape at the “microlevel”.

An abstract optimization problem is formulated at three levels: at the “global” one the pressure field
is controlled by an interface variable – the transversal acoustic momentum involved in the homoge-
nized transmission condition; at the “homogenized interface” level, the interface variables are satisfy the
non-local transmission conditions depending on the homogenized impedance parameters; finally, at the
“microscopic level” these impedance (homogenized) parameters depend on solutions of auxiliary local
problems featured by the shape of perforations.

2. Acoustic transmission through perforated interfaces

We consider the global problem of the wave propagation in a duct Ω ⊂ R3 filled by the acoustic fluid.
Ω is subdivided by perforated plane Γ0 in two disjoint subdomains Ω+ and Ω−, so that Ω = Ω+ ∪
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Ω− ∪ Γ0, see Figure 1 (obviously, much more general setting is possible). The acoustic pressure field p
is discontinuous in general along Γ0. In a case of no convection flow (the linear acoustics), the waves
propagating in Ω are described by the following equations where κ is the wave number (i.e. frequency
ω = κc)

∇2p+ κ2p = 0 in Ω+ ∪ Ω− ,

transmission conditions G(κ, [p]+−, [∂p/∂n]+−) = 0 on Γ0 ,

riκp+
∂p

∂n
= s2iκp̄ on ∂Ω ,

(1)

where s, r and p̄ are given data, [·]+− is the jump across Γ0. ∂p
∂n = n · ∇p is the normal derivative on

Γ0. The homogenized transmission conditions G = 0 developed in Rohan and Lukeš (2010) introduce
two internal variables on Γ0: the “in-layer” acoustic potential p0 and the “trans-layer” acoustic velocity
g0, which is coupled with the “off-layer” fields through: ∂p/∂n± = ±iκg0, so that [∂p/∂n]+− = 0.
Boundary ∂Ω = Γw∪Γin∪Γout of the duct is split into walls and the input/output parts; by the constants
r, s in (1)3 different conditions on ∂Ω are respected: r = s = 0 on the duct walls Γw, whereas r = s = 1
on Γin and r = 1, s = 0 on Γout.
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Fig. 1: Left: illustration of the transmission coupling – the acoustic pressure jump is proportional to the
transverse acoustic velocity g0. Center: the domain and boundary decomposition of the global acoustic
problem considered. Right: perforated interface and the representative periodic cell Y = Y ∗ ∪ S.

3. Acoustic problem with homogenized sieve

We now formulate the state problem describing acoustic waves in open bounded domain Ω with im-
mersed homogenized sieve represented by non-local transmission conditions. We need the following
notation:

aΩ (p, q) =

∫

Ω
∇p · ∇q , (p, q)Ω =

∫

Ω
pq , 〈p, q〉Γ0

=

∫

Γ0

pq .

The problem is defined at two levels:

At the global level the interface conditions involve 3 geometrical parameters A,B, F which charac-
terize the design of the sieve perforation; we define (summation α, β = 1, 2)

A(p, q) =

∫

Γ0

Aαβ∂βp∂αq , B(g, q) =

∫

Γ0

Bαg∂αq , F(g, h) =

∫

Γ0

Fgh . (2)

The global problem is to find (p.p0, g0) ∈ H1(Ω \ Γ0)×H1(Γ0)× L2(Γ0) such that

aΩ (p, q)− κ2 (p, q)Ω + iκ 〈p, q〉Γin−out
− iκ

〈
g0, [q]+−

〉
Γ0

= 2iκ 〈p̄, q〉Γin

A(p0, φ)− κ2ς∗
〈
p0, φ

〉
Γ0

+ iκB(g0, φ) = 0 ,

−iκB(ψ, p0)− κ2F(g0, ψ) + iκ
1

ε0

〈
[p]+−, ψ

〉
Γ0

= 0 ,

(3)

for all (q, φ, ψ) ∈ H1(Ω \ Γ0)×H1(Γ0)× L2(Γ0), where ε0 is the real thickness of the layer.
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π1 ξ π1 ξ
A = 0.843, B = 0, F = 1.660 A = 0.542, B = 0.897, F = 6.603

Tab. 1: Correctors π, ξ and homogenized coefficients for two different geometrical structures.

At the local level the geometrical parameters A,B, F are determined upon solving “microscopic
problems”. The perforation design is characterized by computational cell Y = Ξ× ]− 1/2,+1/2[ with
Ξ = ]0, b1[ × ]0, b2[, where the fluid occupies domain Y ∗ and S = Y \ Y ∗ represents a rigid obstacle,
see Figure 1. Further I±y = Ξ± (0, 0, 1) are the “lower” and “upper” faces of Y . In (3), ς∗ = |Y ∗|/|Ξ| is
the porosity. Below the space H1

#(Y ∗) contains all Ξ-periodic functions in the Sobolev space H1(Y ∗).
The local problems read: find πβ, ξ ∈ H1

#(Y ∗) such that

(
∇yπβ, ∇yψ

)
Y ∗

= −
∫

Y ∗
∂yβψ , β = 1, 2 ,

(∇yξ, ∇yψ)Y ∗ = −
(∫

I+y

ψ −
∫

I−y
ψ

)
,

(4)

for all ψ ∈ H1
#(Y ∗), where ∇y = (∂/∂yβ) and (, )Y ∗ is the inner product in L2(Y ∗). Using the local

responses, the geometrical parameters can now be computed, see (2) and Figure 1:

Aαβ =
1

|Ξ|
(
∇y(πβ + yβ), ∇y(πα + yα)

)
Y ∗

,

Bα =∼
∫

Y ∗
∂yαξ =∼

∫

I+y

πα− ∼
∫

I−y
πα , F = − ∼

∫

I+y

ξ− ∼
∫

I−y
ξ ,

(5)

where −
∫

= |Ξ|−1
∫

. Note F > 0 and A is positive definite.

Table 1 illustrates how the homogenized coefficients and corrector functions depend on the geomet-
rical arrangement of the reference cell Y .

4. Optimal design problem

One of the most frequently used criteria of optimality in acoustics is related to transmission loss (TL)
evaluated using two pressures pin = p on Γin, pout = p on Γout, where p satisfies the state problem
(3). In our numerical tests we observed some remarkable sensitivity of TL on the perforation design, see
Rohan and Lukeš (2010). In the further sections we will employ the following objective function:

ΦTL(p) = Φ̂(pin, pout) = 20 log

( |pin|
|pout|

)
− T̃L. (6)

Let the perforation design be controlled by design variables d which describe the shape of obstacle
S and, thereby, the shape of domain Y ∗, so that d influences the homogenized coefficients A,B, F
involved in (3). Let us recall that these coefficients are integrals of functions πβ, ξ which are solutions
of the microscopic problems (4) posed in Y ∗. At the global level, d influences the overall acoustic fields
(p, p0, g0).
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We can now define the optimal perforation design problem:

min
d∈Dadm

Φ(p, p0, g0)

subject to: (p, p0, g0) solves (3), where A,B, F are given by (4),(5),
(7)

where Dadm is the set of admissible designs, constraining shape regularity of ∂S and typically some
other features, like the size of the obstacle (thickness), or porosity of the interface.

To solve (7) using gradient-based methods, the sensitivity of Φ w.r.t. the design d = (di) must be
supplied at any iteration (Φ can be substituted by ΦTL or −Φ0, for instance). For this, any component
di is associated with the design velocity field ~V i which can be constructed e.g. by solving an auxiliary
elasticity problem in domain Y ∗ or it results from derivative of the spline-based parametrization of the
reference cell mesh, see Fig. 2. The shape sensitivities δAαβ(~V i), δBβ(~V i), δF (~V i) and δζ∗(~V i) of
coefficients Aαβ, Bβ, F and ζ∗ can be obtained, as described in Rohan and Lukeš (2009), using the
general approach based on the material derivative.

The total design sensitivity δΦ(p, p0, g0; ~V i) = ∂
∂di

Φ is obtained by formula

δΦ(p, p0, g0; ~V i) = 2<
{∫

Γ0

δAαβ(~V i)∂βp0∂p̃0 − κ2

∫

Γ0

δF (~V i)g0g̃0

−κ2δζ∗(~V i)
∫

Γ0

p0p̃0 + iκ

∫

Γ0

δBα(~V i)
(
∂αp̃

0 g0 − ∂αp0 g̃0
)}

,

(8)

where (p̃, p̃0, g̃0) ∈ H1(Ω \ Γ0) ×H1(Γ0) × L2(Γ0) is the adjoint state, cf. Feijóo and others (2004),
satisfying the adjoint equation, see Rohan and Lukeš (2009) for details,

aΩ (p̃, q)− κ2 (p̃, q)Ω + iκ 〈p̃, q〉Γin−out
− iκ

〈
ψ, [p̃]+−

〉
Γ0

+ iκ
1

ε0

〈
[q]+−, g̃

0
〉

Γ0

+A(p̃0, φ)− κ2ς∗
〈
p̃0, φ

〉
Γ0

+ iκB(ψ, p̃)− iκB(g̃0, φ)− κ2F(g̃0, ψ)

=− 1

2

(
∂<(p,p0,g0)Φ(p, p0, g0; q, φ, ψ)− i∂=(p,p0,g0)Φ(p, p0, g0; q, φ, ψ)

)
,

(9)

for all (q, φ, ψ) ∈ H1(Ω \ Γ0) ×H1(Γ0) × L2(Γ0), where < and = is the real and the imaginary part,
respectively.

(A) (B) (C)

Fig. 2: (A): spline-based parametrization of the reference cell mesh, initial state; (B): FE mesh modified
by moving position of the inner control points; (C): design velocity field ~V associated with the shape
perturbation – y-shift of control point 4.

4.1. Numerical example

We consider a 2D problem of acoustic waves in a waveguide equipped with a perforated plate, see
Fig. 3, designed by repeating a reference cell which geometry is controlled by the spline functions. In
the optimal design problem we allow four inner control points to move, see Fig. 2, so we have eight
optimization parameters (two coordinates for each control point). The objective function to be optimized
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Fig. 3: Acoustic waveguide equipped with a perforated plate Γ0.

is considered in such form to find a shape of the obstacle for which the transmission loss TL(p) is
close to a required value T̃L. The results (local minima) were obtained by the SQP algorithm with box
constraints which secure the “mesh deformation” during the design iterations.

We started the optimization with two different initial states given by the parametrization vectors
[0, 0, 0, 0, 0, 0, 0, 0] (for rectangular shape), [0, 0, 0, 0,−0.3, 0.3,−0.3, 0.3] (for distorted shape), see
Fig. 4, (A) and (B). In both cases, the optimization process resulted in the shape parametrized by
the vector [−0.304, 0.304,−0.304, 0.304,−0.276,−0.276, 0.276, 0.276], the final shape is depicted in
Fig. 4(C). The box constraints were chosen as 〈−0.35, 0.35〉 for all eight parameters to secure the “safe
mesh deformation”. Figure 4(D) shows the shape ([−0.25, 0.25,−0.25, 0.25, 0.25,−0.25, 0.25,−0.25])
of the reference cell for which the transmission loss T̃L was computed. The fact, that the optimization
finished in state Fig. 4(C) and not in Fig. 4(D), can be explained by the existence of multiple local minima
of the used objective function.

(A) (B) (C) (D)

Fig. 4: (A) and (B): two different initial states used in optimization, parametrization: [0, 0, 0, 0, 0, 0, 0, 0]
(left), [0, 0, 0, 0,−0.3, 0.3,−0.3, 0.3] (middle); (C): final shape of the obstacle after optimization,
param.: [−0.304, 0.304,−0.304, 0.304,−0.276,−0.276, 0.276, 0.276] (D): the shape with param.
[−0.25, 0.25,−0.25, 0.25, 0.25,−0.25, 0.25,−0.25] for which T̃L was computed.

5. Conclusion

The “multi-scale” homogenization approach is employed for an efficient treatment of the optimal perfo-
ration design. We use the spline parametrization to control the shape of the solid obstacle forming the
perforation. The model and its sensitivity discussed in this paper are implemented in our in-house devel-
oped finite element based code SfePy (Cimrman and others (2012)). The numerical example demonstrate
the ability of the optimization method to find an appropriate shape of the solid obstacle for a given trans-
mission loss value.
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