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Abstract: A quarter car model with magnetorheological (MR) damper is studied. An adopted 
experimentally verified non – linear hysteretic mathematical model is used to represent the MR damper. 
Approaching road disturbances are measured by a sensor. Optimal preview control strategy                  
for fully active suspension is derived with respect to road holding, suspension rattle space and ride 
comfort. Continuous inverse mathematical model of the MR damper for the use of control is derived such 
that force generated by MR damper matches the control force of fully active system if possible.               
In the simulations, the effect of tire lift off is modeled using a continuous mathematical function. 
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1. Introduction 

In recent years active and semi-active suspensions have been investigated due to their ability to adapt 
to various types of road excitations. Compared with passive suspension systems, which can only 
dissipate the energy present in the system, active suspension systems can supply the flow of energy 
into the system and can generate forces which are independent of the state of the system. Effective 
compromise between passive and active suspension systems are semi-active suspensions. Semi-active 
suspension systems are less expensive than the active ones, they require much less energy intensive 
source and even if the source of energy fails they can still operate as passive suspension systems. 

In this paper a magnetorheological damper is utilized in the suspension system as a semi-active 
part. An experimentally verified non-linear hysteretic mathematical model is used to represent          
the dynamics of the MR damper. A basic quarter car model is utilized to simulate the vertical 
dynamics of vehicle. For the use of control algorithm a continuous inverse mathematical model         
of the MR damper is derived. Dissipative force generated by the MR damper tries to match the one 
generated by a fictive ideal active system. Optimal preview control strategy for the fully active system 
with respect to road holding, suspension rattle space and ride comfort  is derived such that it is 
supposed that approaching road disturbances are measured by a sensor and are known within a certain 
distance ahead. Active and semi-active suspension systems with preview are examined in vehicle 
travelling over a bump and in both cases the effect of tire lift off is investigated. 

2. Quarter car model with idealized active suspension and with consideration the tire lift off 

To simulate the vertical dynamics of vehicle, the quarter car model is utilized – figure 1a.).              
The equations of motion with consideration the tire lift off problem are follows: 
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where H(-) is the heaviside step function and u is the force generated by active control element, which 
dynamics is neglected. 
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Fig. 1: a.) quarter car model with active suspension 
b.) functions modeling the tire lift off problem 
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a.) b.) 

The function modeling the tire lift off problem can be rewritten into form: 

       2 2 2
1 11 1 sgn 1 tanh
2 2 rH y w y w y w               (2) 

where now the function tanh(-) is a continuous function and βr is a coefficient large enough. 

Noting the relation (2), equations of motion in the matrix form are: 

  tanh r g u   a aA aL aR aN aR a aR ag uM q K q K q e q b b  (3) 
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1
1

2 2
2 1

1 1 1 2

2 2 1

0 0 00 0
, , , ,

0 10
2 2

1
, , ,

1

Tkm
k km k

m y y y
m y y w

   
                   

   

      
          

      

a aL aN a

ag u aA aR

M K K e

b b q q

 (4) 

Transformation from absolute to the relative coordinates is realized through the equation: 
 w aR aA aA awq T q T  (5) 

where 
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Combining equation (3) and differentiated equation (5), state space model of system in the figure 1 a.) 
is obtained: 

  tanh r u   a aL a aN a a a a a gwx A x A x E x B G f  (7) 

where 
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where Oa and oa are zero matrix and vector respectively of appropriate dimensions. 
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3. Optimal linear preview control of idealized active suspension 

Optimal linear control without preview has been widely utilized in active suspensions regulation. As 
was shown by many authors, e.g. (Hać & Youn, 1991; Hać, 1992; Thompson & Pearce, 1998), 
optimal linear control with preview, i.e. the case when approaching road disturbances are known 
within a certain distance ahead, reduces variances of car body acceleration, suspension travel and tire 
deflection at the same time compared with the no preview case. 

In this section, optimal linear preview control of idealized active suspension is derived. Incoming 
road disturbances are measured by a sensor at some distance ahead of the vehicle. The tire lift off 
effect is not considered in the deriving. The equations of motion for such a problem are: 
  u a aA a aR uM q K q b  (9) 

where 

 1

1 2

0k
k k

 
  

 
aK  (10) 

The remaining variables are described above. Combining equation (9) and differentiated equation (5), 
state space model of idealized active suspension with preview and without consideration the tire lift 
off effect is obtained: 
 u w  a a a a awx A x B G  (11) 

where 
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 (12) 

The state vector xa contains relative displacements aRq  (suspension and the tire deflections) and 
absolute velocities  aAq  (car body and the wheel velocities) – see (8). Such a description leads           
to the velocity of road disturbances at the input. It is assumed that the road disturbances w(t) (and also 
its derivation) are measured at the distance lp in front of the vehicle, i.e. at time t the preview 
information about incoming road disturbances is available from the time t up to time t + tp, where         
tp = lp/v is the preview time and v is the vehicle velocity. The active force generator is optimized        
in regard to ride comfort, suspension rattle space and road holding. Corresponding variables to be 
minimized are car body acceleration, suspension deflection and tire deflection. 

  1 1 2 2
Ty y y y w  z  (13) 

and in state space form 
 u w  a a a az C x D H  (14) 

Then the performance index involves appropriately weighted variances of optimized variables (13) 
that are to be minimized and weighted variance of active force that is also to be minimized: 
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or using (13) in the generalized matrix form 
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Constants q1, q2 and q3 are weighting constants chosen by the designer that determine the tradeoff 
between the optimized variables. Q is weighting matrix and R is control cost constant. 

After substituting for z, the argument of the integral (16) after some adjustment has the form 

 1 2 2 2u Ru u R u w Q w u w     T T T T T T T
a 1 a a 1 a 2z Qz x Q x x N x N  (18) 

where 

 1 2, , ,R R Q     T T T T T
1 a a a a a a 1 a a 2 a aQ C QC D QD H QH N C QD N C QH  (19) 

Then the Hamiltonian H for this issue is in the form 

    1 2
1 2 2
2

u R u w Q w u w u w        T T T T T T
a 1 a a 1 a 2 a a a aw aH x Q x x N x N λ A x B G x  (20) 

where λ is a vector of Lagrange multipliers. The necessary conditions for the optimum of H are 

 0 d
u dt

   
    

   a a

H H H
x x

 (21) 

From the first condition we obtain the active control force u 

  1
1 10 : 0u R u R

u

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H x N λ B N x B λ  (22) 

From the second necessary condition 

  :d u w
dt
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 (23) 

After substituting the control force – in relation (22) – into (23) and after some adjustment we obtain 

  w   T
n a n 2λ Q x A λ N  (24) 

where 

 1 1
1 1,R R    T T

n 1 1 1 n a a 1Q Q N N A A B N  (25) 

Substitution the control force – in relation (22) – into the state equation (11) gives 

 1
1R w  T

a n a a a awx A x B B λ G  (26) 

From the linear structure of equations (24) and (26) the proposed solution follows 

        t t t t aλ P x r  (27) 

where 

        , 0,T T T T  T T aP P r λ P x  (28) 

where  tr  is a vector dependent on the excitation  w t  and T is the duration of the problem. 
Differentiation (27) according to time gives 

            t t t t t t  a aλ P x P x r  (29) 

Substitution the relations (27) into (26) and next (24) and (26) into (29) after some manipulation yields 

      1 1
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n n a a n a n a a aw 2P PA A P PB B P Q x r A PB B r PG N  (30) 

Whereas  tax  and  w t  are arbitrary vectors, relation (30) is valid only when both sides of (30) are 
zero vectors, which implies 
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If the problem duration T approaches infinity, T  , the first equation from relations (31) can be 
rewritten as 

 1
1R   T T

n n a a nPA A P PB B P Q O  (32) 

where now P is a nonnegative definite symmetric solution of the algebraic Riccati equation (32). 
The second equation from relations (31) is integrated backwards and uses all the future information 
about the derivative of the road input  w t  up to time t = T. Nevertheless  w t  for τ > t + tp is not 
available, because at time t the preview information about incoming road disturbances is available 
from the time t only up to time t + tp, therefore  w t  for τ > t + tp is replaced by its expectation which 
is zero. This yields zero solution for r(τ) for τ ≥ t + tp. 

      1
1 , 0pR w t t      T T

n a a aw 2r A PB B r PG N r  (33) 

After some substitutions 

  , 0pw t t    T
c rr A r G r  (34) 

where 

 1
1 ,R   T

c n a a r aw 2A A B B P G PG N  (35) 

The solution of equation (34) is given by following integral: 
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T T
c cA A

r rr c G  (36) 

With respect to r(t + tp) = 0, the vector integration constant cr is obtained 

      
1 1

p pp
t t t tt te e w d e w d    
       
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T T Tc c c

A A A
r r r ro c G c G  (37) 

Substituting cr obtained in (37) into (36) after some manipulations gives 

      
pt t t

t
t e w d

 
 

 
T
cA

rr G  (38) 

Now, state a substitution σ = τ – t. Integral (38) after performing the substitution and switching        
the limits of integration is transferred to form 

    
0

pt
t e w t d   

T
cA

rr G  (39) 

For determination of r(t) it is necessary to solve the integral (39) at each time. 
Finally, substituting λ – equation (27) – into the one for the control force – equation (22) – and       
with respect to (32) and (39), after some manipulations, the active control force is obtained 

  1 1
1 1u R R    T T T

1 a a aN B P x B r  (40) 

After the introduction of substitutions 

  1 1
1 1,R R   T T T

b 1 a f aK N B P K B  (41) 

the relation (40) has the form 
 u   b a fK x K r  (42) 

It can be seen that the active control force consists of the feedback gain Kb and of the feedforward 
gain Kf. The feedforward part of the active control force Kfr(t) is a function of incoming road 
disturbances – integral (39) – which implies that it tries to eliminate the effect of these approaching 
road excitation on the vehicle. 

With respect to (42), the state equation (11) of idealized fully active system can be rewritten as 

   w   a a a b a a f awx A B K x B K r G  (43) 
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4. MR damper – hydromechanical and mathematical model 

Hydromechanical and mathematical model of the MR damper were identified by the author                
in publication (Úradníček, 2008), where they were designed on the basis of model                               
of an electrorheological damper compiled in publication (Hong & Choi, 2005). 

Hydromechanical parameters of the hydromechanical model of the MR damper – figure 2 a) – are: 
C1, C2, C4 – compressibility of the volumes front of, behind the piston and of gas storage 
A1, A2, A4, Af – cross-sectional area of the bottom, top part of the piston and cross-sectional area         

of the membrane and of the grooves 
p1, p2, p4 – pressures of the MR fluid front of, behind the piston and of gas storage 
If – inertia of the MR fluid flowing through the grooves of the piston 
Rf – hydraulic resistance of the MR fluid flowing through the groove of the piston 
∆pMR – pressure drop in the groove of the piston caused by friction force 
yr – displacement of the MR fluid flowing through the groove of the piston relative to piston 
yp – displacement of the piston of the MR damper 
ym – displacement of the membrane separating the MR fluid from gas 
Overall pressure drop in front of and behind the piston is: 

  2 1 tanhf f r f f r MR d rp p p I A y R A y p y       (44) 

The parameter βd allows us to regulate the friction force near zero velocity of motion of the MR fluid 
flowing through the grooves. The function tanh (-) ensures the consistency of the mathematical model. 

 
Fig. 2: a.) hydromechanical model of the MR damper b.) dynamical characteristics of the MR damper 
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Maintain the continuity of the volumes front of, behind the piston and of gas storage describe 
following relations: 

 

 
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Since the cross-sectional areas A1 and A2 are approximately equal, they can be approximated by their 
mean value Ap ≈ (A1 + A2) / 2.  
Pressures in front of the piston and of gas storage are also approximately equal – p1 ≈ p4. 
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Pressure drop in front of and behind the piston with respect to relations (45) and the above 
assumptions after some manipulation is: 

  2 1
1 4 2 1 4 2

1 1 1 1
f r p f pp p A y A A y

c c c c c c
   

         
    

 (46) 

By substituting the equation (46) into (44) and by multiplying by the approximate area, the equation  
of motion of the hydromechanical model of the MR damper in the figure 2 a.) is obtained. 

   
1 4 2 1 4 2

1 1 1 1tanhf f p r f f p r MR p d r f p r p f pI A A y R A A y p A y A A y A A y
c c c c c c


   

         
    

 (47) 

After substitutions 
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1 2
1 4 2 1 4 2

, , ,

1 1 1 1,

f f f p f f f p y MR p

f f p f p f

m I A A c R A A F p A

k A A k A A
c c c c c c

   

   
       

    

 (48) 

the equation of motion (47) is transferred to form 

  
1 2

tanhf r f r y d r f r f pm y c y F y k y k y     (49) 

The damping force of the MR damper is proportional to the pressure difference in front of and behind 
the piston 

  2 1MR pF p p A   (50) 

By substituting (44) into (50) with respect to substitutions (48) the damping force of the MR damper is 
obtained 

  tanhMR f r f r y d rF m y c y F y    (51) 

With respect to the equation of motion (49) for the damping force also applies 
 

2 1MR f p f rF k y k y   (52) 

In publication (Úradníček, 2008) author experimentally identified the parameters of the MR damper 
LORD RD – 1005 – 3 on the basis of mathematical model described by relations (49) and (51) as 
functions of electric current flowing through the coil of the MR damper (for the range of electric 
current 0 – 1.25 A): 

 
   

   
1 2

3 2
5 1 1 2 2 2 2

2 2
3 3 3 4 4 480

f f c c y c c c c

d f c c c f c c c

m d c I c I d F I a I b I c I d

k I b I c I d k I b I c I d

      

      
 (53) 

The values of the parameters of the approximate functions (53) are in the table 1. 
 

Tab. 1: Values of the parameters of the approximate functions (53) 

i ai bi ci di 

1 0 0 1685 21.5 
2 - 368.19 216.5 952.02 98.61 
3 0 - 772967.93 1657383.84 76527.7 
4 0 - 1271919 2571391.71 173556.34 
5 0 0 0 1.45 

 
Some dynamical characteristics of the identified mathematical model of the MR damper – equations 
(49) and (51) – excited by a harmonic force of amplitude 12.5 mm and frequency 1 Hz for different 
electric currents are in the figure 2 b.). 
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5. Quarter car model with MR damper and with consideration the tire lift off 

The mathematical model of the semi-active MR damper described in the previous section is 
implemented in the quarter car model described in the second section. So the idealized fully active 
suspension is replaced by the MR damper. In the equations of motion (1) the active control force u is 
replaced by the one generated by the MR damper – FMR. 

 
 

     

1 1 1 1 2 1

2 2 2 2 2 1 2 1 21
MR

MR

m y k y y F m g

m y k y w H y w k y y F m g

    

          

 (54) 

Dynamics of the MR damper is described by the relations (49) and (51) in the previous section. It is 
useful to utilize the relation (52) instead of the relation (51) for the expression of the damping force   
of the MR damper. 
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 (55) 

In the case of using the MR damper in the quarter car suspension the piston displacement yp with 
respect to the figure 2 a.) and equations of motion (54) is replaced by the suspension deflection y2 – y1. 
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 (56) 

By substituting the MR damping force from the second relation of (56) into (54) the equations           
of motion of the quarter car model with MR damper and with consideration the tire lift off in the 
matrix form are 

    tanh tanhs d r g     s sA sL sA N sA sL sR sN sR s sR sgM q B q B q K q K q e q b  (57) 

where 
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(58) 

Transformation from absolute to the relative coordinates is realized through the equation: 
 w sR sA sA swq T q T  (59) 

where 
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sA swT T  (60) 

Combining equation (57) and differentiated equation (59), state space model is obtained: 

    tanh tanhr d    s sL s sr s s s sd s s gwx A x A x E x A x G f  (61) 
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 (62) 

where Os and os are zero matrix and vector respectively of appropriate dimensions. 

6. Continuous inverse mathematical model of the MR damper 

Mathematical model of the MR damper works such – see relations (56) – that for given electric current 
and for kinematic variables the damping force FMR is calculated. An inverse model of the MR damper 
designed for the use of control should calculate the control electric current for given kinematic 
variables and for required damping force. 

In section 3 the optimal preview control and corresponding active control force were derived.      
In this section as required damping force FMR that is trying to be matched by the MR damper the active 
control force u from section 3 is taken. In some situations the active force is physically unable to be 
achieved by the MR damper. This problem is solved below. 
As it was pointed out the active control force that would be generated by fully active system is trying 
to be matched by the one generated by the MR damper, so with respect to the second relation of (56) it 
can be written 

 
 

2 11 2

MR

f f r

F u
k y y k y u



   
 (63) 

For the use of control it is appropriate to replace the variables kf1(Ic) and kf2(Ic) from relations (53)     
by linear functions kf1r(Ir) and kf2r(Ir) and for given range of control electric current to optimize their 
parameters by the least squares method – see figure (3) 

    
1 23 3 4 4,

r rf r r r r f r r r rk I c I d k I c I d     (64) 

These relations (64) are used only in the inverse model of the MR damper for calculating the required 
electric current. 
 

Fig. 3: Comparison of the functions used in the mechanical and in the inverse model of the MR damper
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After mentioned replacement the second relation of (63) now has the form 

  
2 11 2r rf f rk y y k y u     (65) 

By substituting (64) and (42) – relation for calculating the active control force u – into (65) we obtain 
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where 
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After some manipulations the required control electric current is obtained 
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where 

 
 

   

1 2 3 44 3

4 3 1 2 2 1 2

0 0 0 0 , 0 0

0 0 0 0 ,

r r b b b b

T
r r r r

d d K K K K

c c y y y w y y y y

      

   

n s

d

I b

I s

K K

K x
 (69) 

If this fictive required electric current Ir flew through the coil of the MR damper, the ideal control 
active force would be achieved. The required electric current Ir calculated from the relation (68) can be 
any real number (also negative, which is physically impossible). But there are some restrictions         
of electric control current. Working range of the electric current is limited to 0 – 1 A. Instead of 
commonly used saturation a continuous function is utilized for the calculation of theoretical control 
electric current for used MR damper (Havelka, 2010) – see figure 4 

 
1 11 tanh
2 2ct rI I
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     
   

 (70) 

The parameter α was optimized by the least squares method to match the commonly used saturation. 

 
Fig. 4: Comparison of commonly used saturation and the designed continuous function Ict [A] 
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Since the response time of an actual MR damper to the theoretical required control electric current Ict 
is not immediate but time-delayed, this effect can be included into the model using a first order filter 

      
1

c c ct
MR

I t I t I t
T
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where TMR is the time constant of the MR damper set to 20 ms and Ic is the actual electric current 
applied to the model (53) of the MR damper. It further means that the system matrices AsL and Asd    
of the state space model (61) are also dependent on the applied electric current Ic. 

7. Simulations and results 

To significantly demonstrate the benefits of preview control the vehicle model was let to travel      
over a bump and further it was supposed that all the state variables are measured. The bump is 
described by equation 
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 (72) 
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where tbs is the “starting” time of the bump, bh is the height of the bump and tb = bl / v  is the duration 
time of the bump where v is the vehicle velocity. 

Values used during the simulations are listed below. 
 
Bump parameters: bl = 0.5 m; bh = 0.05 m 
 
Quarter car parameters: m1 = 288.9 kg; m2 = 28.58 kg; k1 = 14 000 N/m; k2 = 155 900 N/m; 
 
Weighting constants: weight to ride comfort q1 = 1; weight to suspension rattle space q2 = 103;  

weight to road holding q3 = 104;  
weight to penalizing the active control force r = 0 

 
Control electric current calculation: c3r = 884 415; d3r = 205 355; c4r = 1 299 475; d4r = 385 540;       

α = 2.65 
 
The quarter car equipped with fully active idealized suspension was let to travel over a bump        

at velocity 4 m/s – figure 5. The preview distance in front of the front wheel was set to 1.6 m. This 
implies the preview time tp = 0.4 sec. 

 
Fig. 5: Responses of the quarter car model traveling over a bump equipped with fully active system 

controlled by ”active” and “active with preview” control strategies 
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c.) wheel displacement d.) tire contact point diplacement 

 

In Figure 5 car body acceleration and car body, wheel and tire contact point displacements           
of fully active quarter car model traveling over a bump controlled by “active” and                       
“active with preview” control strategies are shown. In all cases the active preview control strategy 
provides lower amplitudes and also smaller variances. As shown in Figure 5 c.) – the preview 
controlled active suspension acts the wheel before the bump excitation comes to smoothly lift it over 
the bump and avoids the tire lift off the road compared with the no preview case when the undesired 
tire lift off effect occurs – Figure 5 d.). 

 

Then the quarter car equipped with the MR damper in suspension was let to travel over a bump    
at velocity 3.5 m/s – figure 6. The preview distance in front of the front wheel was set to 1.6 m. This 
implies the preview time tp = 0.457 sec. 
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Figure 6 shows that the semi-active MR damper with the preview case provides some small 
improvement in car body displacement compared with the no preview case, but in terms of the wheel 
displacement no difference between the preview and no preview case can be observed. 

 

Fig.6: Responses of the quarter car model traveling over a bump equipped with MR damper controlled   
with ”no preview” and “preview” control strategies 
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a.) car body displacement b.) wheel displacement 

 

This is because the semi-active MR damper is unable to supply energy into the system and cannot 
generate forces when there is no changing suspension deflection, i.e. the MR damper cannot act       
the system before the excitation comes – see figure 7 b.). 

 

Fig.7: Required active force “u” and the actual control force of the MR damper “FMR” in the quarter  
car model traveling over a bump controlled  with” no preview” and “preview” control strategies  
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The control electric current is trying to change the MR fluid properties to achieve the required active 
control force – see figures 8 and 7 b.) from the time 2.5 sec up to time 3 sec – but during this time 
period there is no changing suspension deflection so the MR damper can produce no force – see FMR  
in the figure 7 b.) during this period. 

Fig.8: Control electric current flowing through the coil of the MR damper in the quarter car model 
traveling over a bump controlled  with” no preview” and “preview” control strategies 
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8. Conclusions 

The preview controlled active suspension acts the vehicle before the excitation comes, i.e. prepares  
the vehicle for approaching road disturbances to smoothly travel over them and reduces the probability 
of undesired tire lift off effect. Active suspension with preview compared with the no preview case 
provides lower maximum amplitudes and smaller variances of car body acceleration, suspension travel 
and tire deflection at the same time. 

In the case of utilizing the semi-active MR damper in suspension difference between the preview 
and no preview control strategies almost diminishes. This is because MR damper is only able              
to dissipate the energy present in the system and cannot generate independent forces when there is no 
changing suspension deflection. 
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