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Abstract:  The theoretical model is presented. The vibrations are proposed to be random nature and are 
caused by random pressure fluctuation in the turbulent boundary layer surrounding the rod. The mean 
square of the amplitude of rod deflection is expressed using frequency response function to distributed 
loading and the spatial correlation density of the pressure fluctuations. The general expressions is 
derived and applied to slender rod with boundary condition  pinned-pinned.  
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1. Introduction 

In the operation of nuclear power plants the fuel assenblies are surrounded by the axial turbulent flow 
and in consequence of pressure fluctuations acting on its surface. The problem is this one of random 
vibrations. In general several types of forces exists as follows  

- the pressure forces which are considered to be independent of rod motion.  

- the damping forces which are dependent on the lateral velocity of the rod 

- the inertie forces which are dependent on the acceleration  

- the elastic restoring forces which are dependent on the stiffness. 

Special type of kinematic excitation represents independent mutual motion of upper and lower 
supports. This one is not included in this model.  

2. Basic equations  

Under the suppositions discussed in the previous chapter it can be shown that the mean square of the 
amplitude of deflection at the centre of the rod may be expressed as follows (Thomson 1965) 
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Where M ….. mass of the rod 
            1!  …. fundamentals circular frequency of the rod to distubuted loading  

            ( )fH  … frequency response function of the rod to distributed loading 

            ( )fH ! … komplex conjugate of ( )fH  

            L  …. length of the rod 
            1! …. fundamentals mode of the rod 

            xx !, …. space variables 

             t  …… time 
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( ) ( )txFtxFRf ,, !!=   where ( )txF ,  and ( )txF ,!  denote values of the transverse forces at 

points x and x´ respectively at time t and the symbol !denotes time average per unit bandwith in 
this case at frequencyf. The term per unit bandwith is related to frequency under analysis.  

For the evaluation of the spatial correlation fR we will concentrate attention on the component of 
vibration in the plane containing cross section A-A, see Fig.1: Let us suppose unity of the rod length 
and homogeneous pressure field surrounding the rod. If we denote pressure diference between any 
point on the rod surfa#e and a point diametrally oposite as „p“ and let positive „p“ is associated with 
the force directed toward the upper half on the figure then the force directed upward in the interval
!d  is !! dpDF cos2/= . Similarly the force on the interval !!! ""="" dpDFisd cos2/0 . 

Based on the principles of integral calculus it is evident that the time mean square of the force F 
acting on the rod in the plane containing cross section A-A per unit rod length and per unit bandwith is 
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Reavis  (1967)  postulated that exists a such positive value of ! that we can suppose following 
approximation  

  ( ) ( ) ( ) !!"!! #$$#
=
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Substituting (3) into (2) as the result we obtain  
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and represent effective rod diameter squared to actual rod diameter squared. 

In eq. (5) the force ( ) !txF ,2 is expressed in terms of ( ) !tx,2" . It means that the peripherally 

distributed pressure loading is converted into a concentrated force loading.  

 

From the supposition of the homogeneous boundary layer we can deduce that equation (3) depend 
not only on angles !! "# but also on the coordinates ( )xx !" . It means that the following equation 
may be written  
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Based on the Gorman experiments (Gorman 1969) equation (7) may be rewritten as follows  
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where parameter ! is different from ! in equation (6). The following values are valid: 
.0.1,6.0 == !" (Gorman 1969). Putting eq. (8) into eq. (1) and after simple rearrangement we can 

written  
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and as the result we obtain  
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3. Application on the slender rod with boundary condition pinned pinned  

In this case the double integral in eq. (10) takes the form  
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Based on given boundary conditions and eq. (5), the integral in eq. (11) takes the form  
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The general glutation of eq.  (12) is given in (4) and takes the form  
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For 2=n the following expression is valid (Prudnikov 1981) 
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Conclusions  

This paper represent theoretical analysis of the effects of boundary layer turbulence on fuel rod 
vibrafon. Some results of experimental investigations has been used. We will continue in this effort as 
follows 

- Numercial evaluation of the values 2
L!  

- Assessment of mean square of the rod amplitude for the fuel rod of fuel assembly 
TVSA-T 

- Application on the fuel assembly TVSA-T of NPP Temelin.  

Preliminary numercial assessment showed that ( ) mty
rms

µ04.3=  
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Fig. 1: Cross section A-A 
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