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Abstract: Some necessary implications for the time-discrete integration of finite deformations will be dis-
cussed together with particular schemes, when the geometrical structure of the space of Cauchy-Green
deformation tensors, implicitly contained in the principle of virtual power, is taken into account. All these
time-discrete schemes reflect this geometrical structure in that the actual integration of corresponding evo-
lution equation of deformation process takes place in the subset of positive-definite symmetric matrices (with
non-Euclidean geometry), instead of in the linear space of symmetric matrices (with Euclidean geometry)
as usual.
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1. Introduction

The conference paper is intended to draw attention to one of consequences, namely, the time-discrete
approximation of finite deformation, when seeing a deformation process as a curve in the space of de-
formation tensors – in the sense of Noll and Seguin (2010), though using a rather different mathematical
infrastructure and, moreover, employing natural geometry of this space, inherited from the principle of
virtual power, see Fiala (2011, 2008). This approach provides exact and geometrically consistent proce-
dure for linearization and integration of deformation process in time variable.

STARTING POINT: From the viewpoint of finite deformations, a deformation process can be represented
pointwise by a trajectory C : I → Sym+(3,R) – the configuration space consisting of the set of all
positive-definite symmetric matrices (right Cauchy-Green deformation tensors).

Note that ∂Ct = 2FTdF ∈ sym(3,R) – the linear vector space of all symmetric matrices, where d is
the rate-of-deformation tensor (stretching) – symmetric velocity gradient, and F is deformation gradient.
One can then prove (Fiala (2011, 2008)) the following proposition.

PROPOSITION: Within small deformations, a deformation process superposed on initially strained body,
characterized by the initial deformation field C, is represented by a trajectory in the linear vector space of
all symmetric matrices sym(3,R) ≡ TCSym

+(3,R) – the tangent space to the manifold Sym+(3,R)
at a point C, i.e. the space of all vectors emanating from C.

Based on the power of internal forces, we introduce Riemannian metric on Sym+≡ Sym+(3,R) to
become a manifold with Riemannian geometry, so that we shall be able to analyse deformation process
by means of tools of differential geometry. Similarly we set sym ≡ sym(3,R). Let us consider the
stress power
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where symbol σ, as usual, stands for the Cauchy stress field, Kt for the convective stress and Pt =
C−1
t KtC

−1
t for the 2nd Piola-Kirchhoff stress.

Now, consulting the analytical mechanics (Marsden et al. (1999)), we can interpret
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as the Riemannian metric on Sym+ at the point C – a particular deformation state, and, as a consequence,
the convective stress Kt as the vector and the 2nd Piola-Kirchhoff stress Pt as the covector fields along
deformation process Ct. Interestingly – in view of the logarithmic strain log(C), a geodesic (i.e. straight
line) Ct connecting two deformation states C1 and C2 then reads

Ct = ExpC0
(tH) : = C0 exp(tC−1

0 H), (4)

where H = C0 log (C−1
0 C1), and exp, log stands for matrix exponential, resp logarithm.

Now, we can draw conclusions of the geometrical structure of Sym+ for the time-discrete integration
of finite deformations. If we calculate, starting from a given deformation state of a body Ct, a defor-
mation increment ∂Ct, based on linearized equations and prescribed increments of external loading and
displacement, the new resultant deformation Ct+∆t then is obtained by mapping this deformation incre-
ment to the space of all deformations Sym+ starting at the initial state – i.e. by mapping the vector ∂Ct

from the tangent space TCtSym
+ at the point Ct into the space Sym+. This mapping can be formally

expressed in terms of a general formula

Ct+∆t = ExpCt
(∆t ∂Ct) . (5)

In our context of Sym+, the generalized exponential map (2) adds up an increment of deformation
H ≡ ∂C0 ∈ TC0Sym

+ to the deformation C0 ∈ Sym+, so that the resulting deformation C1(H) =
ExpC0

(H) stays in the space of deformations Sym+. This would not be the case if we just set C1(H) =
C0 +H due to neglecting the “shape” of Sym+ within the linear vector space of symmetric tensors sym.

CONSEQUENCE: Resulting deformation C1(H) from adding an increment of deformation H to the
deformation C0 is given by

H 7−→ C1(H) ≡ ExpC0
(H) : = C0 exp(C−1

0 H) = (6)

= C0 + H + 1
2! HC−1

0 H + 1
3! HC−1

0 HC−1
0 H + . . . (7)

The approach mentioned above is nothing but the forward or explicit Euler’s scheme, only conditionally
stable, for evolution equation of deformation process

∂Ct = 2CtD (8)

evolving on Sym+, where D = F−1dF, which is constant along geodesics.

After having summed up basic facts related to time-discrete integration of finite deformations in this
introduction, we shall first discuss the geometry of the underlying configuration space Sym+ and the
properties of evolution equation of finite deformation on this space. Then we introduce methods of its
solution in terms of Runge – Kutta – Munthe-Kaas (RKMK), and finely briefly mention another closely
related method – again based on Lie group approach.

2. Configuration space Sym+ – a playing field for finite deformations

Geometry of this space is explained in Fiala (2009), where further references are included. Here, I am go-
ing to highlight just some facts, which are substantial for exposition of time-discrete integration. Sym+

is made up of all possible Cauchy-Green deformation tensors C, in any point X of reference configura-
tion B.

C = FTF (9)

As usual, F denotes deformation gradient of Φ. Cauchy-Green deformation tensors are represented by
positive-definite symmetric matrix, and describe local geometry in the vicinity of x = Φ(X) ∈ S in
actual configuration from the viewpoint of an observer in reference configuration. In fact, C(X) in
X ∈ B is related to an image of metric tensor g(x) in x ∈ S via the deformation Φ.

Since F ∈ GL – the group of nonsingular matrices with group operation of matrix multiplication,
we have a natural map

p : GL→ Sym+ F 7→ C := FTF. (10)
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Let us consider two successive deformations resulting in one single deformation and their deformation
gradients

Φ = Φ2 ◦ Φ1 F = F2F1. (11)

Then
C = FT

1C12F1, (12)

where the resulting Cauchy-Green deformation tensors C is obtained by “translating” by an “amount”
F1 of the Cauchy-Green deformation tensor C12 (standing for the deformation in state 1 with respect
state 2). This is nothing but an operation of symmetry on Sym+ with respect to already introduced
metric (3) via group GL:

R : GL× Sym+ → Sym+ (F,C) 7→ FTCF. (13)

This operation is called right translation, since R(F2F1, .) = R(F1, R(F2, .)).

There is also similar approach leading to left translation L related to the Piola deformation tensor
B = FFT, for which order of composition of transformations L(F2F1, .) = L(F2, L(F1, .)), compared
to order of matrix multiplication in GL, does not reverse.

Before turning to evolution equation we need yet to specify some properties of Sym+. Since many
elements of GL have the same image in Sym+, the map (10) does not have an inverse. But taking into
account polar decomposition of nonsingular matrices F = RU, we can introduce the isotropy subgroup
O ⊂ GL, which is the group of orthogonal matrices

O : =
{
R ∈ GL |RTR = I

}
, (14)

so that all elements in the right coset [U] : = {RU |R ∈ O} will have the same image U2 ∈ Sym+,
and resulting in factorisation of GL into disjoint right cosets. The correspondence between right coset
space GL/O and Sym+

π : GL/O → Sym+ [F] 7→ C : = GTG for some G ∈ [F] (15)

is now one-to-one, and in addition to that, it is diffeomorphism.

Moreover, we can carry over the operation of matrix multiplication in GL to operation of right
translations on GL/O via

ρ : GL×GL/O → GL/O (G, [F]) 7→ [FG], (16)

so that the folowing diagram is commutative

GL/O
π // Sym+

GL/O

ρG

OO

π // Sym+

RG

OO

That is
π ◦ ρG = RG ◦ π, (17)

where ρG(.) : = ρ(G, .) and RG(.) : = R(G, .) for any G ∈ GL. We call this property equivariance,
which means that instead of studying the action of GL on Sym+, we can equally well study the action
of GL on GL/O.

3. Evolution equation for finite deformations

After having computed an increment of deformation d(v) = sym(∇v) superposed on a deformed
configuration Φ1 with deformation gradient F1 and deformation tensor C1, we have then to update
deformation tensor to get the resulting C2 in terms of the initial C1 and computed deformation rate
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∂C1 = 2FT
1d(v)F1. Since FTdF = CtF

−1dF = CtD, see Fiala (2008), we thus obtain the evolution
equation for deformation process in finite deformations

∂Ct = 2CtD
(
= 2DTCt

)
∈ TCtSym

+, (18)

evolving on Sym+⊂ sym. Its time-discrete integration then gives us the desired formulae for updating
deformation tensors Ct. Note that D = F−1dF is constant along geodesics.

If the equation (18) evolved on the space of symmetric tensors sym, which is linear vector space,
we could use Runge – Kutta method, but not in our case of Sym+⊂ sym. In fact, the curve Ct lies in
Sym+, and so ∂Ct ∈ TCtSym

+ is the tangent to this curve, i.e. a vector in Sym+ at its initial point
Ct. Since Sym+ has non-Euclidean geometry, we cannot identify the space of points with the space of
all vectors emanating from a point, as is the case for linear vector spaces (with Euclidean geometry), and
so the classical Runge – Kutta method is inapplicable. Nevertheless, due to correspondence between the
right coset space GL/O and Sym+, and specific properties of Lie groups GL and O, it is still possible
to extend this approach into modified Runge – Kutta – Munthe-Kaas method, which is now usable in our
space. The key point is that these spaces possess “sufficient” amount of “basic” movements, so that we
can still compare different vector spaces at different points, though with a bit complicated formulae in
comparison with linear vector spaces (cf. section 5.), for which they simply reduces to identities.

In general, consider a differential equation of the form

∂C = H(C), t ≥ 0, C(0) = C0, (19)

where H(C) is a tangent vector field on Sym+. Whenever convenient, we allow H to be a function of
time H = H(t,C). The flow of a vector field H is the solution operator

Ψt,H : Sym+ → Sym+, (20)

such that
C(t) = Ψt,H(C0) (21)

solves (19). Note that the vector field H and the solution operator Ψt,H are related by differentiation

H(Ct) =
d

dt
Ψt,H(Ct)

∣∣∣∣
t=0

. (22)

Let us now discuss the right-hand side of equation (18) from the viewpoint of basic movements. It is
a simple task to prove that

∂Ct = DTCt + CtD (23)

= Ut

(
R−1dR

)
Ut, (24)

where Ft = RtUt and U2
t = Ct.

Now, denoting by RC0 : = R(.,C0), i.e.

RC0 : GL→ Sym+ F 7→ FTC0F, (25)

and by QU0

QU0 : Sym+→ Sym+ B 7→ U0BU0, (26)

then evidently

RC0(I) = C0 (27)

QU0(I) = U2
0 = C0, (28)

and the corresponding vector spaces at I for both GL and Sym+ transforms into TC0Sym
+ by

RC0∗ ≡ TIR
C0 : TIGL→ TC0Sym

+ D 7→ DTC0 + C0D (29)

QU0∗ ≡ TIQ
U0 : TISym

+→ TC0Sym
+ D̂ 7→ U0D̂U0. (30)
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Remind that TCSym
+ is a vector space of all vectors emanating from a point C ∈ Sym+, and similarly

for the vector space TGGL.

That is,

D = F−1dF ∈ TIGL (31)

D̂ = R−1dR ∈ TISym
+ (32)

and equation (18) reads

∂Ct = RCt∗ (Dt) ≡ R ∗(Dt)(Ct) (33)

= QUt∗ (D̂t) ≡ Q ∗(D̂t)(Ct) , (34)

where now Dt is a curve in the vector space of all matrices gl : = TIGL, and D̂t a curve in the vector
space of all symmetric matrices sym : = TISym

+. These equations are called equations of Lie type
(Munthe-Kaas (1999); Iserles et al. (2000)).

Actually, we made use of an identification TGL ≈ GL × gl and TSym+ ≈ TSym+ × sym,
called the right trivialization, where TSym+ stands for a disjunct union of all vector spaces TCSym

+

indexed by C ∈ Sym+ and similarly for TGL. Note also that gl : = TIGL = sym ⊕ skew, that is
T[I]GL/O ≡ sym and TIO = skew, see Fiala (2009) and references therein. Notation skew stands for
the vector space of all skew-symmetric matrices.

4. Limitations of Runge – Kutta method

The classical ν-stage Runge – Kutta method (Hairer et al. (1993)) is defined by constants {ak,l}νk,l=1,
{bl}νl=1 and {ck}νk=1, usually written as a Butcher tableau

c1 a1,1 a1,2 . . . a1,ν

c2 a2,1 a2,2 . . . a2,ν
...

...
...

. . .
...

cν aν,1 aν,2 . . . aν,ν

b1 b2 . . . bν

(35)

Applied to a standard vector equation y′ = f(t,y) on Rn, a single step of length h from yn = y(tn) to
updated yn+1 = y(tn + h) is given first by solving following system of equations for f l

fk = f(tn+ ckh,yn+ hθk)

where θk =
∑ν

l=0 ak,lf l



 k = 1, . . . , ν (36)

and then followed by

yn+1 = yn+ hθ, where θ =
ν∑

l=0

b lf l . (37)

That is, the Runge – Kutta method starts by calculating the the rate of change θ as a weighted average of
estimates of the rate of change of y at several points tn+ ckh within the interval tn to tn+1.

Notice that y is a point whereas f(t,y) a vector at y, which can be translated to the origin of
coordinates without a change. In fact, Rn plays a triple role here: the space of points, then the additive
group of translation operating on the space of point, and finally the vector space, on which the actual
integration is carried out.

In our case, the space of points is the space Sym+ made up of all Cauchy-Green deformation tensors,
and the transformation group GL stands for the group of translation. Since Runge – Kutta method (RK)
demands for Rn, we have to resort to a related linear vector space, which is naturally isomorphic to Rn,
provided we properly transform all the quantities and desired operation to this vector space and back to
Sym+. The previous section suggests two of them: either the tangent space TISym

+ at the identity
matrix I, being equal to the space of all tangents to deformation processes passing through undeformed
state – the vector space of all symmetric matrices sym, or TIGL identified with the vector space of all
matrices gl.
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5. Runge – Kutta – Munthe-Kaas method (RKMK)

Following Munthe-Kaas (1999), we point out the role of actions (25) and (26) for constructing modi-
fied RK method on general homogeneous spaces: First, instead of seeking the discretization directly on
a homogeneous space, we find an element of the group whose action induces the approximation. In fact,
in (33) and (34) we expressed evolving equation (19) in the form

∂Ct = Λ∗(∆t)(Ct), t ≥ 0, C(0) = C0, (38)

where either Λ∗ : gl×Sym+ → TSym+ with a curve ∆t = Dt ⊂ gl, or Λ∗ : sym×Sym+ → TSym+

with ∆t = D̂t ⊂ sym. In case of time-independent ∆, the solution of (38), and thus of (19), is given
explicitly (Theorem 2.8, Iserles et al. (2000)) in terms of the actions (25) or (26)

C(t) = Λ(Γt,C0), t ≥ 0, Γ0 = I, (39)

where
Γt = EXP(t∆0), i.e. ∂Γ0 = ∆0. (40)

EXP stands for the matrix exponential. Otherwise, (39) approximates the solution for short times. Equa-
tion for Γt on corresponding spaces then reads

∂Λ(Γt,C0) = Λ∗(∆t)(Ct), t ≥ 0, Γ0 = I. (41)

That is, instead of approximating C(t), we seek an approximate action Γt that carries C(0) to C(t).
Moreover, even though the group GL, resp the space Sym+ are nonlinear objects, it is possible to
transform the problem to their related linear spaces gl = TIGL, resp sym = TISym

+. In these spaces
we can already apply calssical RK method and so, after transformating back, we get desired numerical
approximation. Coming to terms with all the subtleties results in RKMK method presented in section 5.
Notice that the first approach relies on group action GL, whereas the second one makes use of a direct
map between the homogeneous space Sym+ and the linear vector space sym.

As for EXP, let us remind relation of the spaces Sym+ andGLwith their tangent spaces sym and gl.
For more see, for example, Marsden et al. (1999). Denote by exp and exp the usual matrix exponential,
but related to different spaces. Whereas exp maps all sym onto all Sym+ in one-to-one way, for GL
this property does not apply completely. Still, the map exp : gl → GL is one-to-one in some vicinity of
gl at the null matrix 0, which is maped onto near vicinity ofGL of the identity matrix I, see Fiala (2009).
That is, only for those G ∈ GL sufficiently close to I = exp(0), there exists precisely one g ∈ gl, such
that G = exp(g), with its line segment exp(tg) completely lying in this vicinity for | t| ≤ 1. In other
word, for any g ∈ gl, one can still find sufficiently small ε > 0, such that a line segment exp(tg) is all in
this vicinity for | t| ≤ ε.

During an analysis of the evolution equation for finite deformations, we naturally established two
linear vector spaces, namely sym ≡ TISym

+ and gl ≡ TIGL. In appendix, a transformation of de-
formation rate fields on Sym+ and corresponding vector fields on these linear vector spaces is briefly
summarized, so that we can now express the evolution equation here.

The equation on linear vector space (sym or gl) for sufficiently small t reads (see Appendix)

∂Θt = dEXP−1
Θt

(∆t)(Ct), t ≥ 0, Θ0 = 0. (42)

Now, we can apply RK method to obtain ν-stage Runge – Kutta – Munthe-Kaas method (Munthe-Kaas
(1999)) solving our equation ∂Ct = Λ∗(∆t)(Ct), which evolves on Sym+. Using the Butcher tableau
(35), one step of RKMK method consists in solving following system of equations for δ l

∆k = ∆
(
tn + ckh,Λ

(
EXP(hΘk),Cn

))

where Θk =
∑ν

l=0 ak,lδ l

δ l = dEXP−1
Θl

(∆l)





k = 1, . . . , ν (43)
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then followed by an update

Cn+1 = Λ
(
EXP(hΘ),Cn

)
, where Θ =

ν∑

l=0

b lδl . (44)

Again, Λ stands for the actions (25) or (26), EXP and dEXP−1 for their corresponding matrix exponen-
tials and their inverse differentials.

In particular:

• forward Euler (ν = 1), cf. (5)

0 0

1
Θ = ∆(tn,Cn) (45)

• trapezoidal = modified Euler (ν = 2), for example

0 0 0
1 1/2 1/2

1/2 1/2

δ1 = ∆(tn,Cn)

δ2 = ∆
(
tn+ h,Λ

(
EXP(1

2 h(δ1+ δ2),Cn)
))

Θ = 1
2 (δ1+ δ2)

(46)

6. Conclusions

We analysed the evolution equation for finite deformations. We proved that instead of considering it on
the linear vector space of symmetric matrices sym, it actually evolves on its subset – the manifold of
symmetric positive definite matrices Sym+⊂ sym, so that the usual time-discrete integration schemes
are inapplicable. However, thanks to the specific geometry of Sym+, due to the principle of virtual
power, the modified RK method, namely the Runge – Kutta – Munthe-Kaas method applies. Moreover,
the closely related Magnus expansion method, based on the same geometric approach, might prove
especially useful for highly-oscillatory problems, see Iserles et al. (2000).

Appendix

To find out the evolution equation on linear vector space, we have yet to work out how to transform
deformation rates. For details, see Engø (2000), for preliminaries, for example Marsden et al. (1999).
This section is rather technical and is meant only as a reference.

In T exp, the symbol T denotes the tangent lift of a map exp between manifolds to a map between
corresponding tangent bundles (manifolds of vectors) Tsym and TSym+. Since for vector space sym in
general Tsym ≈ sym×sym, and for Sym+ in particular TSym+≈ Sym+×TISym

+≡ Sym+×sym,
a vector space TΘsym at Θ ∈ sym can be directly identified with sym and a vector space TCSym

+ at
C with sym through the translation QU by U, for which C = U2. That is

sym
id // Tsym

T exp // TSym+
(QU)

∗
// sym

sym

∂Θ

OO

id // sym

∂Θ

OO

exp // Sym+

∂C

OO

Id // Sym+

∆

OO

where (QU)∗ = (QU)−1
∗ . Id and id are respective identity mappings, and in the upper rightmost corner,

we made use of the equivalence TISym
+ ≈ sym. Due to commutativity of the diagram, we eventually

conclude
∂Θ = d exp−1

Θ

(
∆
)
(C), C = exp Θ (47)

where ∂Θ is a vector field on sym, and ∆ a vector field on Sym+ in right trivialization. Both fields
correspond to ∂C – the deformation rate field on Sym+. The diagram for gl and GL looks similar, see
Engø (2000).
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Finally, we cite expressions for the inverse of differential of the exponential mapping dEXP (inverse
of the right-trivialized tangent of the exponential map TEXP).

First consider case of exp : sym → Sym+. Let now Θ = RΛRT =
∑
λiPi be the spectral

decomposition of Θ, where Λ is the corresponding diagonal matrix with diagonal entries λi and Pi
corresponding projectors, then (Bhatia (2007))

d exp−1
Θ (∆) : = R

[
log[1](Λ) ◦ (RT∆R)

]
RT (48)

=
∑

i

∑

j

log[1](λi, λj)Pi ∆Pj , (49)

where the Hadamard (or Schur) product A ◦ B of two matrices A and B is defined to be the matrix
whose (i, j)-entry is A j

iB
j
i , and the 3×3 symmetric matrix log[1](Λ) has numbers

log[1](λi, λj) =
log(λi)− log(λj)

λi − λj
if i 6= j (50)

log[1](λi, λi) = log
′
(λi) =

1

λi
(51)

as its (i, j)-entries. At point 0 ∈ sym the mapping d exp−1
0 = I.

Second, making use of the relation exp : gl→ GL between vector space gl and the original spaceGL
results in following relations. Denoting by [Θ,∆] : = Θ∆−∆Θ, it can be proved, see Munthe-Kaas
(1999); Iserles et al. (2000); Engø (2000),

dexp−1
Θ (∆) = ∆− 1

2 [Θ,∆] + 1
12 [Θ, [Θ,∆]] + ... =

∞∑

j=0

Bj
j!

[Θ, [Θ, [... , [Θ,∆]...]]], (52)

where Bj are j’th Bernoulli numbers. The first few coefficients are

Bj
j!

=

{
0 for k odd, and k 6= 1

1,−1
2 ,

1
12 ,− 1

720 ,
1

30240 ,− 1
1209600 for k = 0, 1, 2, 4, 6, 8.

(53)
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