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INTRODUCTION OF THE ANALYTICAL TURBULENT VELOCITY
PROFILE BETWEEN TWO PARALLEL PLATES

J. Stigler

Abstract: A new analytical velocity profile between two parallel platesis introduced in this article. It is
possible to use this velocity profile for both laminar and turbulent flow. All necessary parameters can be
obtained from the unit flow rate and the pressure drop. We can also use this model in case when the
material of the upper and lower wall is different.
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1. Introduction

The laminar velocity profile between two laminaatels is very well known from the fundamental
lectures of the hydromechanics. The velocity peoiith case of Poiseuille flow means the laminawflo
governed by the pressure gradient, can be therssga by the quadratic function.
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Where Ap/L is a pressure gradient, is dynamic viscosity, h is a half of distance bedw
the parallel plates.
Maximal velocity is in the middle of the channelavé y=0.
Ap h?
V(xmax) = _p_ (2)
Lu 2

Then the velocity profile could be expressed as

V(x) = V(xmax){l_(%j :| (3)
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Fig. 1.Veocity profile between two parallel plates
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It is more complicated to find any analytical s@uatin the case of turbulent flow. There is some
expression which was found on the basis of experatedata. It is known as thpower law.
Unfortunately it was derived only for the flow irpgpe with radius R.
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r
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Where r is a radius within interval <0,R>, R is thipe radius, #is the exponent which is a
function of the Reynolds number. This exponentlmarvaluated from the expression

1 =1+ e/&e (5)
N, 50

There is some discrepancy in this power law dedinitlt cannot be used near the wall, for r=R,
because the derivative has an infinite value thEne.wall shear stregs, is then infinite, which does
not correspond with the reality.

There is also another power law definition by Mun§2006).
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x) (xmax)[ R (6)

Where g is a function of the Reynolds number, see Mun200§). This turbulent velocity profile
has problems in two locations. The first one isgame as in the previous formulation. The wall shea
stress goes to infinity. The second problematiation is in the middle of the channel, the deriati
for r=0 is not zero.

From the above examples it is clear that these mddee problems near the wall. Therefore it is
necessary to focus on the near wall region — bayrslzear layer. The boundary shear layer in the
case of turbulent flow can be divided into thregioas.

The first region is called viscous sub-layer. Tieigion is close to the wall and the viscosity plays
a dominant role in this region. The velocity prefi linear within this region.

The second region is the transition area — thishes region of smooth transition into the
logarithmic velocity profile.

The third one is the region where the turbulentasity plays a dominant role.
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We can define dimensionless velocityand dimensionless distance from the wall y

+ v X
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v = |*% (10)

Many different authors use different values of ¢antsk and B. For example Janalik (2008) uses
thek=0,174 and B=5,5 or Munson (2006) uge$,4 and B=5 or Pope (2008) use€),41 and B 5,2.
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2. Derivation of a new velocity profile

The new velocity profile is derived on the basistef vorticity distribution over the space between
two parallel plates. This velocity profile can beed for all, laminar, turbulent and constant vejoci
profile. The derivation of this type of velocitygdile is based on a Biott-Savart law, the derivatd
it is made in Brdika 2000, applied on a straight vortex filament weittculationl”.

_r 1 ( , )
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This expression is valid for a special situatiorewhhe straight vortex filament is parallel to e
axis. This is also an expression of the velocitjuited by a single potential vortex in case of 2iwvfl
(Lewis 1991). Einstein summation convection isdusethe expression (11). Theig the velocity
induced by the single vortex, tlieis a circulation around the single vortex,~xare coordinates of

vortex location, x, are coordinates of induced velocity locatieg, is an Levi-Civita tensor of "8
order, r is a distance between vortex and poindiced velocity.
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Fig. 2.Velocity induced by a single 2D vortex.

Velocity induced by a plain vortex sheet

There is another well known example of the veloditduced by an infinite plain vortex sheet
Lewis (1991). This sheet consists of the vorteanfients, with constant circulatian which are
parallel to the xaxis. The situation is depicted in the Fig. 3slhecessary to define linear vorticity
densityy in this case. The circulatiorl daround the infinitesimal length of sheet ds carexgressed
this way

d/ =yds => y:d—/_ (12)
ds
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Fig. 3.Velocity induced by the plain vortex sheet Fig.4. Velocity profileinduced by a plain

parallée to the x;,x; plain. vortex sheet parallel to the x;,Xs plain.
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In case that the vorticity density is constant,ratie whole sheet, the velocity induced by a vortex
sheet can be expressed this way.

X' =X
J—/.gigk.—( o) (13)
2 -~

Wherey is the vorticity density, x are the coordinates of location where the velosityiduced,
Xy are the coordinates ofxpoint projection on the vortex shegg, is a distance of point xfrom
the vortex sheet. For the case depicted in a figeh®n the vortex sheet is collinear with planex,
the velocity components are:

Ve —%; V, =0 within the intervalx’,[1(h, + o) (14)
v, :%; v, =0 within the intervalx’,[1(h, —oo) (15)

This type of flow is depicted in the fig 4. It meathat velocity within half-plane above vortex
sheet is constant, parallel to the vortex sheetvatidthe orientation to the left. Velocity withiime
half-plane below vortex sheet is also paralleh ¥ortex sheet but with the orientation to thétig

Velocity induced by two vortex sheets with the opsite vorticity density orientation

Now it is possible to study fluid flow with two pallel vortex sheets, and §). The magnitude of
the vorticity density of both vortex sheets is ddua the orientation is opposite. It means thaty

and y=-y. The vortex sheetus position is %=h;. The vortex sheet$ position is %=-h,. This
situation is depicted in the fig. 5.
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Fig. 5.Velocity induced by the two plain vortex Fig.6. Velocity profileinduced by a plain
sheets paralléel to the x3,%3 plain. vortex sheet parallel to the x;,Xs plain.
The induced velocity for this case should be exqaddy this formula
LIV X' =X i
V=Y e, B (16)

=1 )

This formula is general for an arbitrary numberfrvartex sheets. It is possible, for case of two
vortex sheets with respect to the (16), to write

v=Y¢ (Xk_x(m)k)_l_/ < (Xk_X(OZ)k) 17
i~ 2 *“i3k 2 *“i3k ( )
Moy )

Explanation all parameter in above equation arardtem the fig. 5.
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It is possible to have three different solutions/no

v, =0; v, =0 within the intervalX',[] (h, + 00) (18)
Vv, =Y; V, =0 within the intervalx’, (= h, +h) (19)
v, =0; v, =0 within the intervalx', I (=0, —h) (20)

This solution is very nice and reasonable. It rsdkof the fluid flow between two parallel plates
for infinite Reynolds number Res

Now it is only a small step to find the expressaifrthe velocity profile for the finite Reynolds
number.

Velocity profile for the continuous vorticity distribution over the cross-section

It has to be assumed, for this case, that thecityridensity is not the linear density but it i®th
planar vorticity density. It will be function of éhx coordinate between the plates. Vorticity density
for the fixed coordinate,ds constant. The situation is depicted in a fidt ’s necessary to define the
coordinate system. The axig s parallel to the plates and it is located in thaximal velocity
position.

o) Xk S

<

\

Fig. 7.The distribution of the planar vorticity density between two plates
The velocity profile is derived under these assliomgt
* It is the fluid flow between two parallel infinifgdane plates.

» The vorticity density distribution is continuoustiveen plates. It will be described by two
polynomial functionsy;) andy;, of the N"order.

» The unit flow rate Q and the pressure dppare known parameters.
The continuous vorticity density distribution cam éxpressed by the next formulas.

N
Yo =2 An -|X2|n (21)
n=0
N n
Yy == B x| (22)
n=0

Now the velocity can be expressed this way

N
Viep = Z;(B(n).h;+1 + Ay h - 2.7, .|x2|”+1) within the intervalx, =(0, h)  (23)
n=0 2(n + 1)

— N 1 ( n+l n+l n+1) - . _
Vip = ;m Bnhy +A,,h -2B, .|X2| within the intervalX, —<— h,, O> (24)
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It is necessary to determine the coefficients And B, for n=1-N. These coefficients can be
determined on the basis of the following conditions

« Slip condition on the walls
Vi, =0, for x, =h,
v, =0, for x, =-h,

» The unit flow rate is known.

+ Circulation around element déh,+h) is zero.
» The necessary number of derivative at pojrt R is zero.

On the basis of these conditions it is possiblexiaress velocity profile

N+1
Vi = ((I:l jj)) o ?h ){1—(%} } within the intervalX, =<0, hl> (25)
1 2 1

N+1
N+2 X - .
Yot ((N +1)) ™, ?m) {1_ Uh_q } within the intervalx, =(~h,, 0) (26

The maximal and average velocity can be expresseavay

o -(N+2)  Q
™ (N+D (hy+hy)

(27)

Q

\Y = 28
@ (b, +hy) “

The expression for the number N has to be found. hibis possible to do this from the known
pressure drop.

N: h1h2 .(pl_pz)_z

(29)
|J.V (av) L

Wherep is the dynamic viscosity. All above expressiors @egrived for a case that the plate 1 and
plate 2 were made from different materials. Soeans that there could be different conditions en th
walls. If the conditions on the plates are identiban the velocity profile will be symmetrical;fh,
= h) and it is possible to write

_(N+2) Q

N+1
X
1= (N+D) 2h 1—[u] within the intervalX, = <— h, h> (30)

h

N: h2 .(pl_pz)_z
u'v(av) L

(31)

This expression can be used for all types velqmibfiles from laminar velocity profile (N=1), for
turbulent velocity profiles and also for a pistoglocity profiles N-ow. There is no problem with the
derivatives near the wall and with the zero valiighe first derivative in the centre of channel.

3. Discussion

The formal comparison of different velocity profilevill be presented in this chapter. The only
problem of it is that the power law velocity prefil are derived for a turbulent flow in pipes. Busi
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possible to compare the velocity profiles normaliby vax Velocity. Comparison of velocity profiles

is in the fig. 8. It is only formal comparison besa the pressure drop or the friction factor f@ th
fluid flow between the parallel plates is not knowrherefore the three new velocity profiles for
different values of power N are compared with Mun$®006) power law velocity profile and with
Janalik (2008) power law velocity profile in the f8. It is apparent that the character all kind of
velocity profiles are different. The Janalik's velky profile is rather rounded even for very high
Reynolds number. The Munson velocity profile hascoatinuous first derivative in the center of
channel. The new velocity profiles have also a jgobthat there is a zero second derivative in the
centre of channel. It means that there is an iefimdius there. But this problem should be solved
during derivation its derivation. It means that Hedocity profile can be modified in way to ensuaan
zero second derivative. But it has not been dohe ye
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Fig. 8.New velocity profilesin comparison with power law velocity profiles.

It is possible also compare the velocity profileanéhe wall with a logarithm wall law. This
comparison is depicted in a fig. 9.
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Fig. 9.The new velacity profiles comparison with log wall law.
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The comparison is not so good because the expdweatnot evaluated, because there is no
a measuring of pressure drop and flow rate. Thezdftere are depicted several velocity profiles for
different exponent N. It is apparent that the ba@updhear layer in case of the new velocity prafile
thinner than in the case of real velocity profiléis is probably consequence of the zero valudef t
second derivative of the velocity profile in theadnel centre. There is no comparison for the power
law profiles because there is no possible to expyeand V because infinite shear stress at the wall.

At the end it would be interesting to draw the steteess over channel. It is known that the total

shear stress is linear. Total shear stress is aafiutire viscous shear stregsand the turbulent or
(Reynolds) shear stress

T=T,+T, (32)

Viscous shear stress should be expressed fronoeitygprofile formula (29).

N
T, :p.v(max).(Ngl) (%J within the intervalX, =(=h, 0) (33)
_ (N+2) ()" _
T = THV = { ~ | within the intervalx, =(0, h) (34)

This stress can be expressed in a dimensionless for

N
#;:}0 = (N + 1)(%} within the intervalX,, = <— h, 0> (35)
_Lh =—(N+1), M N within the intervalx, =(0, h) (36)
u'v(max) h i ’

The viscous stress together with the Reynoldsssfarshree different exponents N are depicted in

the fig. 10. This also can’t be compared with tbever law velocity profiles because its shear steg¢ss
the wall is infinite.
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Fig. 10.The Reynolds and viscous stresses derived from a new vel ocity profile..
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4. Conclusion

The new velocity profile based on a vorticity distition between two parallel plates has been
presented in this paper. This velocity profile &tér than the power law velocity profiles becaitise
has not infinite shear stress at the wall. It mehasit is possible to express the Reynolds stseasad
it is possible to compare this profile with thedoighmic law near the wall. This is not possiblease
of the power law velocity profiles because they ehanfinite derivative near the wall. The new
velocity profile has only one problem which canrbmoved. The problem is that this profile has zero
second derivative in the centre of channel. It reethat there is an infinite radius of curvaturesit
also necessary to compare this velocity profileatly with an experimental velocity profiles. This
work can help in understanding or even in modetihboundary shear layers in CFD software.

List of Symbols

Symbol Units Description
A Varies Polynom coefficients
B Varies Polynom coefficients
h [m] Half distance between two parallel plates
hy, hy [m] Distance of plateifs, from a coordinate system origin
L [m] Length. Distance between the pressure looati@asuring.
No - Exponent
Ap [Pa] Pressure difference
Py Pe) [Pa] Pressure at location 1 or 2 respectively
Q [m] Unit flow rate. Flow rate between two parbfdates with 1m width.
r,R [m] Radius
Re [-] Reynolds number
ro) [m] Distance of point x from vortex sheet
Viay) [m.s?] Average velocity between two parallel plates
Vi [m.s] Component of velocity in x direction
V(x max) [m.s] Maximal velocity component in x direction
v [m.s™] Shear velocity
A [] Dimensionless velocity near the wall
Vi [m.s?] Velocity vector
Vo, Vo, V3 [m.s?] Components of velocity vector
X1, X2, X3 [m] Coordinates of location
X'k [m] Coordinates of the induced velocity point
Xk [m] Coordinates of point x'projected onto the vortex sheet
y [m] Coordinate y, or distance from wall
y' [] Dimensionless distance from the wall
r [m%s?] Circulation
y [m.s/[s"]  Linear /planar vorticity density
H [Pa.g] Dynamic viscosity
v [m?.s7] Kinematic viscosity
Eiik [] Levi-Civita tensor
T, [Pa] Viscous shear stress

T [Pa] Turbulent (Reynolds) shear stress
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