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Abstract: The paper deals with the numerical solution of two phase unsteady flow in a steam turbine stage
performed by in-house numerical code. The main issues related to the flow model, numerical method and
problem formulation are presented. The effect of droplet size of incoming wet steam is discussed.
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1. Introduction

The paper presents the results of recent work aimed at the simulation of steam flow with non-zero wetness
at the inlet. The problem formulation requires the complete information about the structure of incoming
liquid phase. It is relatively easy to estimate the inlet wetness, however the flow models have other
unknowns, which have to be set. The presented model is based on the transport equations for three
moments. The values of these moments for the inlet boundary condition have been estimated using
numerical simulation of upstream expansion. Numerical test have shown, that numerical solution is
quite sensitive to the given values of moments. This phenomenon has been studied for the steady flow in
the nozzle. Similar effects have been observed in the case of unsteady flow in a turbine stage.

2. Flow model

Consider the flow of steam with velocity, pressure and temperature corresponding to the conditions
within the low pressure part of a steam turbine. The rapid expansion of steam leads to non-equilibrium
phase change, i.e. the condensation appears ’later’, when the steam temperature drops sufficiently below
the saturation temperature. This ’sub-cooling’ is typically 30 − 40 K. Consider the liquid phase in the
form of high amount of small spherical droplets dispersed in vapor and having the same velocity as the
vapor. There is a mass exchange between vapor and droplets due to phase change. The flow model is
based on the conservation of mass, momentum and energy for the mixture and the transport equation for
the mass fraction of liquid phase. Such kind of model, known also as ’mixture model’, is commonly
used, e.g. Dykas et al (2003), Young (1992) or Šejna and Lain (1994). The droplet size is an important
parameter. In reality there is a whole spectra of droplet sizes in the elemental volume of mixture. Flow
models are mostly based on the average radius approximation, therefore the mentioned set of transport
equations has to be complemented at least by the transport equation for the number of droplets, e.g.
Dykas et al (2003). Here we consider three additional transport equations for the moments according
to Hill (1966) to obtain higher precision of average droplet size prediction and to be able to add some
simple model of droplet size distribution, for details see Halama et al (2010). The moments read:

Q0 = N, Q1 =

N∑

i=1

ri, Q2 =

N∑

i=1

ri,
2 (1)
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where N denotes the total number of droplets per unit mass and ri is the radius of i − th droplet. The
average droplet radius is approximated by r =

√
Q2/Q0. The full system of transport equations reads

∂W

∂t
+
∂F(W)

∂x
+
∂G(W)

∂y
= Q, (2)

W =


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ρQ2
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
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3πr

3
cJρl + 4πρQ2ṙρl
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,

where ρ, u, v and e denotes the mixture density, velocity components and total energy per unit volume
respectively. The symbol χ denotes the mass fraction of liquid phase (wetness). Under the perfect gas
assumption the system is closed by the equation

p =
(γ − 1)(1− χ)

1 + χ(γ − 1)

[
e− 1

2
ρ(u2 + v2) + ρχL

]
, (3)

for further details see Šejna and Lain (1994) and Halama et al (2011). The common pressure for both
phases is considered. The system (2) turns into the 2D Euler equations for the one phase flow if liquid
phase vanishes (χ = Q0 = Q1 = Q2 = 0).

The specific heat ratio reads
γ =

cp
cp −Rv

, (4)

where Rv is the gas constant for vapor and the specific heat at constant pressure cp is a function of
temperature in form

cp = c0 + c1T + c2T
2 + c3T

3. (5)

According to the perfect gas assumption the vapor temperature

T =
p

ρvRv
, ρv = (1− χ)ρ. (6)

The number of suddenly born droplets per second in unit volume is given by the nucleation rate according
to classical theory in Becker and Doering (1935)

J =

√
2σ

πm3
v

· ρ
2
v

ρl
· exp

(
−β · 4πr2cσ

3kBT

)
[m−3s−1], (7)

where the surface tension σ of water is a function of temperature and it is corrected by the coefficient β
proposed in Petr and Kolovratnı́k (2001) to get better agreement with reality

β = 1.328p0.3cor, (8)

where pcor [bar] denotes the pressure at the intersection of the isentropic expansion from reservoir con-
ditions (p0 and T0) with the steam saturation line in the Mollier diagram, see the Fig. 1. The just born
droplet has radius equal to the critical radius

rc =
2σ

Lρl ln(Ts/T )
[m], (9)

where L(T ) is the latent heat of condensation/evaporation and ρl(T ) denotes the density of water. The
saturation temperature Ts is computed using industrial formulation of steam properties IAPWS-IF97.
Droplet growth is computed as

ṙ =
λv(Ts − T )

Lρl(1 + 3.18 ·Kn)
· r − rc

r2
[ms−1], (10)
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Fig. 1: Definition of pcor.

with

Kn =
ηv ·
√

2πRvT

4rp
(11)

where vapor thermal conductivity λv and vapor viscosity ηv are functions of temperature.

We consider a certain limit value χmin for wetness in order to avoid big computational errors (e.g.
division by numbers going to zero, . . . ). The average radius is therefore computed as

r =

〈
0, χ ≤ χmin,√
Q2/Q0, χ > χmin.

(12)

Flow models based on the average size of droplets may not work properly in certain conditions, therefore
according to Sopuch (1996) we split the evaluation of source term Q into four cases

1. T ≥ Ts and r ≤ rmin: all droplets have disappeared, i.e. set χ = Q0 = Q1 = Q2 = 0

2. T ≥ Ts and r > rmin: droplets are evaporating, set rc = 0 in Eq. (10)

3. T < Ts and r ≤ rc: consider nucleation only, set ṙ = 0

4. T < Ts and r > rc nucleation and droplet growth according to the above formulas

The value of rmin is chosen appropriately.

There can be a problem with direct evaluation of droplet growth speed according to the Eq. (10), since
the critical radius goes to infinity, when the vapor temperature approaches the saturation temperature.
From the mathematical point of view this growth is controlled by the term (Ts − T ), which is going to
zero at the same time, so the droplet growth speed ṙ remains finite. However direct implementation of
the Eq. (10) in the numerical code is dangerous, since the product of ’almost infinity’ with ’almost zero’
has unpredictably unstable behavior. Therefore we consider both equations (9) and (10) together in the
form

ṙ =
λv(Ts − T )

Lρl(1 + 3.18 ·Kn)

r − rc
r2

=
λv

Lρl(1 + 3.18 ·Kn)

(
Ts − T
r

− 2σ

Lρlr2
· Ts − T

ln Ts
T

)
, (13)

where the term
Ts − T
ln Ts

T

(’zero’ divided by ’zero’ for T going to Ts) is approximated using the first six

terms of Taylor expansion

Ts − T
ln Ts

T

= T
Ts
T − 1

ln Ts
T

= 1 +
1

2
ϑ− 1

12
ϑ2 +

1

24
ϑ3 − 19

720
ϑ4 +

3

160
ϑ5, ϑ =

Ts
T
− 1. (14)

This approximation yields stable numerical algorithm for cases with steam parameters close to saturation
line.
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3. Numerical method

Presented flow model includes convection, nucleation and droplet growth phenomena, which have very
different time scales. Current numerical method is based on the splitting method of Strang (1968), where
each phenomena is treated by individual numerical method. We use symmetrical splitting, i.e. we solve
three successive equations

∂W∗

∂t
= Q(W∗) (15)

∂W∗∗

∂t
= −∂F

c(W∗∗)
∂x

− ∂Gc(W∗∗)
∂x

(16)

∂W∗∗∗

∂t
= Q(W∗∗∗), (17)

where W∗(t) = W(t), W∗∗(t) = W∗(t + ∆t/2) and W∗∗∗(t) = W∗∗(t + ∆t). The solution
W∗∗∗(t+ ∆t/2) corresponds to the solution W(t+ ∆t) of the original un-split system (2). The single
step of Lax-Wendroff finite volume method is applied for (16) and several steps of Runge-Kutta method
evaluate the source term contribution in (15) and (17). The algorithm of splitting method reads

W
(j+1)
K = RK(W

(j)
K ,

∆t

2m
), j = 0, . . . ,m− 1

W
(m+1)
K = FV(W

(m)
K ,∆t)

W
(j+1)
K = RK(W

(j)
K ,

∆t

2m
), j = m+ 1, . . . , 2m

(18)

where W
(0)
K = Wn

K , Wn+1
K = W

(2m+1)
K , FV(Wn

K ,∆t) denotes one step of Lax-Wendroff method
with initial data Wn

K and time step ∆t (subscript ·K denotes the K-th cell and superscript ·n n-th time
level). Similarly RK(Wn

K ,∆t) denotes one step of the Runge-Kutta method. The local number of sub-
steps is m = ∆t/τ , where τ is the time scale of condensation and ∆t is the time step of finite volume
method for the equation (16). Domain of solution is discretized by the body fitted quadrilateral structured
mesh.

4. Wet steam flow in the convergent-divergent nozzle

Current numerical method has been verified for the case of steam flow in the Barschdorff nozzle, for
details see Halama et al (2011). There have been performed also computations of steam flow in a turbine
cascade and turbine stage. All cases have been chosen to have steam temperature slightly below satu-
ration temperature and zero wetness at the inlet, nucleation then starts inside the domain. Recent work
has been aimed at the case of flow with nonzero wetness at the inlet. Since it is practically impossible to
get reliable information about the droplet size structure of incoming steam, some basic numerical study
for case of flow in a nozzle has been performed. The inlet boundary condition besides the the value of
wetness requires also the values for moments, which have been estimated using numerical simulation of
upstream expansion. The values of moments can be thus subjected to certain error. The following test
cases investigate the sensitivity of numerical solution on the values of moments of incoming wet steam,
in other words the sensitivity on the size of incoming droplets. Consider the geometry of Barschdorff
nozzle from Barschdorff (1971) and three flow cases, which differ only in moments of incoming wet
steam. The outflow static pressure corresponds to the design conditions of nozzle, this means supersonic
velocity at the outlet and therefore no outlet boundary condition. Parameters of the flow cases are given
in the Table 1.

Computed pressure, Mach number, wetness and average radius distributions along the nozzle axis
are presented in the Fig. 2. The inflow droplet size in the case 1D-A is comparable to the critical radius,
therefore the droplet growth given by the Eq. (13) is close to zero and the vapor sub-cooling grows
til the rear part of the nozzle. The nucleation, which starts at the rear part is hardly noticeable, since
the inflow vapor contains too many (too small) droplets so the number of newly born droplets does not
increase much the number of already existing droplets. The wetness rise due to the nucleation is also
small. If we consider bigger droplets at the nozzle inlet, see the case 1D-B, droplets gradually grow and
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Tab. 1: Parameters of considered flow cases.

case 1D-A 1D-B 1D-C

p0,inlet [Pa] 21061 21061 21061

T0,inlet [K] 334.3 334.3 334.3

χinlet [−] 0.349 0.349 0.349

Q0,inlet [kg−1] 0.118 · 1023 0.111 · 1019 0.111 · 1013

Q1,inlet [mkg−1] 0.112 · 1012 0.111 · 1011 0.111 · 107

Q2,inlet [m2kg−1] 0.392 · 103 0.111 · 103 0.111 · 101

the sub-cooling is small, it means that local wetness is close to the local equilibrium wetness. Since the
sub-cooling is small, there is no nucleation. The last case 1D-C considers the biggest droplets at the
inlet. Wetness rise due to droplet growth is negligible compared to the case 1D-B since the total surface
of droplets which is proportional to the second moment Q2 is small. The vapor sub-cooling grows and
downstream the throat nucleation starts, which yields significant droplet size drop. The present model
with single average size of droplets is no more suitable for such case, because it is not able to distinguish
two groups of droplets with very different sizes. All three cases refer to the considerable sensitivity
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Fig. 2: The distributions along nozzle axis.

of condensing steam flow model on the structure of liquid phase at the inlet. Therefore one has to be
very careful with the estimation of inlet boundary conditions as well as with conclusions about results of
numerical simulation.
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5. Stator-rotor interaction

Here we present the first results of unsteady stator-rotor interaction with the non-zero wetness at the
inlet. A two-dimensional case corresponds to the cylindrical cut from the real annular stage projected
onto plane. The set of equation (2) is solved in the coordinate system attached to the each respective blade
cascade, i.e. in the absolute frame for stator and in the relative frame for the rotor. Numerical domain
consists of 8 stator and 11 rotor blade passages to keep the original ratio of stator to rotor number of
blades. Computational grid consists of single H-type structured block per each blade channel. The single
stator channel is discretized by 112x45 points and the single rotor one using 141x33 points, see the Fig.
3.

Fig. 3: Detail of computational grid at stator-rotor interface.

Initial computations have been performed for inlet boundary conditions related to the case 1D-A for
the nozzle and outlet static pressure 4165 Pa. Numerous tests with relaxed time step, increased artificial
dissipation etc. were performed to suppress the appearance of oscillations in the stator cascade. The
regularization of droplet growth model, see the Eq. (13) and (14), helped to stabilize the numerical
algorithm, although some oscillations of solution in the stator cascade remained, see the wetness isolines
in the Fig. 4. These oscillation have most probably their origin in ’too small’ size of droplets . The

Fig. 4: Wetness contours at t = t0 for ’too small’ droplets at the inlet

values of moments for that case have been obtained from numerical solution in upstream stage, where
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nucleation took place close to stage outlet and the numerical simulation under-predicted the size of
droplets. Therefore we further present the case with ’bigger’ droplets (the moments Qi were modified).

We compare two cases. The case 1, which models only convection of wet steam, i.e. the source term
including nucleation and droplet growth is omitted. The case 2 considers the solution of complete system
with nucleation and droplet growth. Both cases have the same boundary conditions, the inlet boundary
conditions corresponds to the case 1D-B for the nozzle in the previous section. The outlet static pressure
is 4165 Pa. The Fig. 5 shows isolines of pressure in two consequent positions of rotor cascade during
the rotor movement of one rotor pitch (the time necessary for the rotor shift of one pitch is denoted as
τR). The flow field in the stator cascade does not contain shock waves, the pressure field between stator
and rotor is without strong gradients. The structure of isolines for different rotor positions is thus very
similar. The following figures 6 - 8 show isolines of wetness, vapor sub-cooling and average droplet
radius respectively. These figures does not contain the results of case 1, since this case models only pure
convection of vapor with parameters given by the inlet boundary conditions, i.e. the Figures 6 - 8 for the
case 1 would show only a constant value everywhere.

(a) t = t0, case 1 (b) t = t0 + 0.5τR, case 1

(c) t = t0, case 2 (d) t = t0 + 0.5τR, case 2

Fig. 5: Pressure field.

6. Conclusions

Current numerical method has been successfully extended for the cases with non-zero wetness of incom-
ing steam. The droplet growth model has been regularized. The numerical method has stable behavior
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(a) t = t0, case 2 (b) t = t0 + 0.5τR, case 2

Fig. 6: Wetness contours.

(a) t = t0, case 2 (b) t = t0 + 0.5τR, case 2

Fig. 7: Vapor sub-cooling contours.

in the case of steady flow in a nozzle as well as unsteady flow in a turbine stage. The sensitivity of
numerical results on the droplet size of incoming steam has been reported. The results achieved for cases
with identical wetness and different sizes of droplets at the inlet have shown, that the droplet size has
a non-negligible effect also for pressure distribution in the whole computational domain. One has to be
careful with the problem formulation, since the values of moments at the inlet has to be usually estimated
by numerical simulation and thus they may be deteriorated by some errors. This work showed the need
for improved droplet growth model to get more reliable droplet size prediction.
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(a) t = t0, case 2 (b) t = t0 + 0.5τR, case 2

Fig. 8: Average droplet size [µm].
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