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Abstract: A simple fracture-mechanics based method is described for assessing a part-through crack in 
the wall of a pipe subjected to internal pressure of liquid and/or gas. The method utilizes simple 
approximate expressions for determining the fracture parameters K, J, and employs these parameters to 
determine critical dimensions of a crack on the basis of equality between the J-integral and the J-based 
fracture toughness of the pipe steel. The crack tip constraint is taken into account by the so-called plastic 
constraint factor C, by which the uniaxial yield stress in the J-integral equation is multiplied. The results 
of the prediction of fracture conditions are verified by burst tests on test pipes. 
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1. Introduction 

In thin-walled gas pipelines, similarly as in other (especially welded) structures, we should expect 
defects to occur. Under certain conditions, the defects can grow and they will gradually shorten the 
residual life of gas pipelines. Using fracture mechanics we can assess the threat that such defects can 
pose to the pipeline wall taking into account whether a brittle, quasi-brittle or ductile material is 
involved. A model description of crack-containing systems, based on the stress intensity factor (SIF), 
K, can be used for brittle and quasi-brittle fracture, and in addition for subcritical fatigue growth, 
corrosion fatigue and stress corrosion [1], [2]. In these cases, the surface crack is usually located in the 
field of one of the membrane tensile stress components or in the field of bending stress, or in a 
combination of these two stresses. In comparison with the dimensions of the crack and the cross 
section of the pipeline the extent of the plastic zone at the crack tip is small.  If the gas pipeline is 
made of a high toughness material, the plastic strains become extensive before the crack reaches 
instability. Hence, some elasto-plastic fracture mechanics methods,  such as J-integral, crack opening 
displacement, the two-criterion method or some other procedure, should be employed to assess the 
fracture condition of the pipeline [3], [4]. Because the method of determination of burst pressure of 
thin-walled pressure vessels utilizes simple approximate expressions for determining the fracture 
parameters K, J, a brief background of some fracture-mechanics formulae will be made first.  

2. A brief background of some fracture-mechanics formulae 
 
SIF for an axial through crack 
The stress intensity factor can be determined by equation (1) 

 cMK TI πσϕ=  (1) 

Where  tpD 2/=ϕσ  is the hoop stress, and 

MT         is the Folias correction factor, taking account of curvature of  a pipe  

One of the most widely used expressions to determine the Folias factor is the following [5]: 
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where   R     is the mean radius of the pipe, and 
             t      is the pipe wall thickness 
 
SIF for an axial  part-through crack 
 
Various methods are used for analyzing the problem of axial semi-elliptical surface cracks in the wall 
of a cylindrical shell (Fig. 1). 
 

 
Fig. 1  An external longitudinal semi-elliptical crack in the wall of a cylindrical shell 

 
A very good estimate of the stress intensity factor for such a crack is given by expression (3). 
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This is an adjusted form of the Newman solution [6] for a thin-walled shell. Here 
 
MF    -   a function depending on the crack geometry (on the ratio a/c),  
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p  -  the function depending on the crack geometry (on the ratio a/c) and on the relative crack depth 
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  -  the correction factor for curvature of a cylindrical shell and for an increase in 

stress  owing to radial strains in the vicinity of the crack tip 

Functions MF and p differ in form for the lowest point of the crack tip (point A in Fig. 1) and for 
the crack mouth on the surface of the cylindrical shell (point B in Fig. 1). 

The next fracture-mechanics parameter we need for determination of the burst pressure of a 
pipeline is J integral. The actual magnitude of this quantity will be compared to its critical value – the 
fracture toughness. From this comparison a magnitude of the burst pressure will result. 

3. Engineering methods for determination of J integral 

3.1 FC method 

This method was proposed in Addendum A16 of the French nuclear code [7] as the Js method. It stems 
from the second option of describing the transition state between ideally elastic and fully plastic 
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behaviour of material, that is to say from the function f2(Lr) of the R6 method [8]. This function takes 
the form:  
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where   
Lr = σ/σL  (σ – applied stress, σL – stress at the limit load) 
Re is the yield stress 
E is Young´s modulus 
εref is the reference strain corresponding to the reference (nominal) stress σref 

If we identify function f2(Lr) with function ( )
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 and express Lr as σref / Re and elastic J 

integral Je as K2/ E´, where E´ =E for plane stress state and E´ =E / (1−ν2) for plane strain state, we 
have: 
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The stress  σref  in the above equation is a nominal stress – i.e. a stress acting in the plane where the 
crack occurs. Taking into consideration the description of the stress-strain dependence by the 
Ramberg-Osgood relation (6) and  adjusting Eq. (5) we obtain the J-integral in the form (7). 
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As the pipeline is a body of finite dimensions, stress σ in Eqs. (7) and (8) is a nominal stress – i.e. 
a stress acting in the plane where the crack occurs.  Referring to the R6 method [8] this stress for the 
pipe containing longitudinal part-through thickness crack may be written as: 
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In eq. (9)     pD
2tφσ =    is the hoop stress  and the meaning of the symbols a, c, and t is clear from Fig.2.  

3.2 GS method 

The GS method was derived by Gajdoš and Srnec [9] on the basis of the limit transition of J-
integral, formally expressed for a semi-circular notch, to a crack, with the variation of the strain 
energy density along the notch circumference being approximated by the third power of the cosine 
function of the polar angle. If the stress-strain dependence is further expressed by the Ramberg-
Osgood relation (6)  with ε0 = σ0 / E, ( α, n – material constants) it can be arrived at  Eq. (10) 
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where σ is the nominal stress in the reduced cross-section of a body. For a pipe containing longitudinal 
part-through thickness crack it may be determined by the relation (9). 
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4. Accounting the constraint 

The crack tip constraint is accounted here by a simple procedure based on the so-called plastic 
constraint factor on yielding, C. This factor is given by the ratio of the stress needed to obtain plastic 
macrostrains under constraint conditions to the yield stress at a homogeneous uniaxial state of stress 
[10]. The C factor can be expressed by the relation (11) 

 1

HMH

C σ
σ

=  (11) 

 
where σHMH, the Huber-Mises-Hencky stress, is put equal to the yield stress.  

Let us now consider the state of stress at the crack tip in a thick-walled body, where the stress 
perpendicular to the crack plane, σ1, and the stress in the direction of the crack, σ2, are equal, and the 
stress in the direction of the thickness of the body, σ3, is governed by the expression σ3=ν(σ1 + σ2). 
Then, based on the HMH  criterion and assumed elastic conditions (ν ≅ 0.33), the plastic constraint 
factor C ≈ 3. If the stress in the thickness direction, σ3, falls within 2νσ1 and zero (thin-walled body), 
the value of the plastic constraint factor will range between C = 1 and C = 3. These data can be used to 
assess fracture conditions in gas pipelines with surface part-through cracks, employing a C-factor 
which has to be experimentally determined. After determination of the C factor the value of Cσ0 
would be used instead of the yield stress σ0 in relations for the calculation of J-integral. 
The C factor was experimentally investigated at the Institute of Theoretical and Applied Mechanics of 
the Academy of Science of the Czech Republic  in the framework of a broader project concerned with 
research of the reliability and operational safety of high pressure gas pipelines. Fracture conditions 
were investigated on five pipe bodies, made of steels X52, X65 a X70, with cycling-induced cracks. 
Data on the pipe bodies used, cracks in the walls, and mechanical and fracture-mechanical material 
properties of the bodies are given in Table 1. 
 

Tab. 1. Summary of data concerning the assessment of the fracture behaviour of pipe bodies 

Material X 52 X 65 X 65 X 70 X 70 
D (mm) 820 820 820 1018 1018 
t (mm) 10.2 10.7 10.6 11.7 11.7 
c (mm) 50 100 100 127 115 
a (mm) 7.0 7.7 7.0 6.7 7.1 

a/t 0.686 0.720 0.660 0.573 0.607
a/c 0.14 0.077 0.07 0.053 0.062

p (MPa) 8.05 9.71 9.86 9.86 9.55 
p/p0.2 1.034 0.750 0.769 0.800 0.775

σ0 (MPa) 313 496 496 536 536 
α 2.40 5.34 5.34 5.92 5.92 
n 6.25 8.45 8.45 9.62 9.62 
C 2.1 2.4 2.4 2.0 2.07 

Jcr (N/mm) 487 432 432 439 439 
- T/σ0 0.672 0.575 0.544 0.606 0.611
- Q 0.667 0.591 0.546 0.648 0.651

 

The individual rows in the table show the following data (top to bottom): body diameter D, body 
wall thickness t, half-length of longitudinal part-through crack c, crack depth a, relative crack depth 
a/t, aspect ratio a/c of a semi-elliptical crack, fracture pressure p, ratio of fracture pressure p and 
pressure p0.2 corresponding to the hoop stress at the yield stress, yield stress in the circumferential 
direction of the body σ0, Ramberg-Osgood constant α, Ramberg-Osgood exponent n, plastic constraint 
factor C, J-integral critical value Jcr, determined as Jm (corresponding to attaining the maximum force 
at the “force – force point displacement” curve), T-stress to yield stress ratio T/σ0,  and Q parameter. 
Values of σ0, α and n were derived from tensile tests and the values of Jcr from fracture tests run on 

326 Engineering Mechanics 2012, #67



 
 

CT specimens. Values of the fracture pressure p were read at the moment the ligament under the crack 
in the pipe body ruptured. Values of the plastic constraint factor on yielding, C, were determined on 
the basis of J-integral in such a way that agreement was reached between the predicted and 
experimentally established fracture parameters for the given crack and fracture toughness of the 
material. The J-integral value was calculated from the GS method [9] on the one hand and the French 
nuclear code [7] on the other hand. 

It should be noted that in determining the C factor the critical value of J-integral established on CT 
specimens was considered– namely Jcr = 439 N/mm for steel X70, Jcr = 432 N/mm for steel X65 and 
Jcr = 487 N/mm for steel X52. It was found out by a computational analysis of CT specimens, 
employed to construct the R curve, that the Q parameter for these specimens had been Q = 0.267.  A 
comparison of this with the Q parameter for pipe bodies (Q ≈ -0.55 ÷ -0.65) reveals that the constraint 
in the CT specimens was much higher. This implies that the real fracture toughness – i.e. the critical 
value of J-integral, Jcr – was higher in the pipe bodies. The real C factor for a cracked pipe body is 
lower, so that the J-a curve for a pipe body is steeper than that for CT specimens with a greater C 
factor [11]. Due to this, the J integral for the axial part-through crack reaches the corresponding higher 
fracture toughness (for a lower constraint) for the same crack depth as the J integral with a higher C 
factor reaches lower fracture toughness (determined on CT specimens). The situation is illustrated in 
Fig.2.  

 

Fig. 2 Schematic J-a dependence for (i) a CT specimen, and  (ii) a pipe with an axial  
part-through crack 

 

Normalized T–stress values in Table 1 were obtained by the use of the plane solution – i.e. 
solution for an infinite length of a crack oriented longitudinally along the pipe. The problem was 
solved in the Institute of Physics of Materials, Brno, by the finite elements method. The solution 
included two steps: (i) a corresponding FEM network was established and corresponding boundary 
conditions were formulated for each crack depth, (ii) magnitudes of the stress intensity factor and the 
T-stress were calculated for each FEM network by means of the FEM system CRACK2D with hybrid 
crack elements. Values of the Q parameter were derived from Q – T/σ0 curves, obtained by O´Dowd 
and Shih [12] by modified boundary layer analysis for different values of the  strain coefficient 
(Ramberg-Osgood exponent, n). Strictly speaking, the Q parameter values from Table 1 do not 
correspond accurately to values for the examined cracks, because T-stresses were not computed for 
real semi-elliptical cracks, but for cracks spreading along the entire length of pipe body (a/c ≈ 0). 
Nevertheless, with regard to the fact that the ratio of the depth to the surface half-length of examined 
cracks (a/c) was close to zero (a/c=0.053÷0.14), we can assume that the differences between real 
values of the Q parameter and the values listed in Table 1 will be small. Relations between the C and 
the Q parameter will be discussed later. 
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5. Burst tests 

For burst tests of pipe bodies it is usually sufficient that the length of the pipe between the welds of 
dished bottoms is at least 3.5 D. Such a length permits placing a number of starting cuts axially along 
the length of the body. The cuts are made to initiate crack growth when the body is subsequently 
pressurized by a fluctuating pressure of water. They can be made in several ways, of which one uses a 
thin grinding wheel. The smallest real functional thickness of such a wheel is about 1.2 mm and the 
corresponding width of the cuts made with it is approximately 1.5 mm. Depending on the type of pipes 
of which gas pipelines are built (seamless, spirally welded, longitudinally welded) the starting cuts can 
be provided in the base material, transition region or the weld metal, their orientation being axial, 
circumferential or along the spiral weld. The depth of an initiated fatigue crack must be at least 
0.5 mm along the whole perimeter of the cut tip so that the cut with the initiated crack at its tip can be 
considered as a crack after the pipe body has been subjected to cycling. This value follows from work 
of Smith and Miller [13]. 

As it was seen in the preceding section, the results of burst tests are presented in Table 1. The 
cracks were made in such a way that the test pipes were first provided with working slits and the check 
slits. The latter slits were of the same surface length as the working slits but their depth was greater. 
These check slits functioned as a safety measure to prevent cracks that developed at the working slits 
from penetrating through the pipe wall. For illustration, a DN1000 test pipe body of the working 
length 3.5 m is shown in Fig. 3.   
 

 
Fig.3 Test pipe body DN1000 with marking the starting cuts 

 

The check slits are denoted in Fig. 3 by a supplementary letter K. The material of the test pipe 
body is a thermo-mechanically treated steel X70 according to API specification. The pipe is spirally 
welded, the weld being inclined at an angle of ϕ = 62° to the pipe axis. It is provided with starting cuts 
oriented either axially or in the direction of the strip axis (i.e. in the direction of the spiral) and then 
along or inside the spiral weld. The cuts differ in length (2c = 115 mm or 230mm) and depth (a = 5, 
6.5, 7, and 7.5 mm). We are particularly interested in axial (longitudinal) slits situated aside welds 
because these are sites where axial cracks will be formed in the basic material of the pipe. 

Efforts were made in the fracture tests to keep the circumferential fracture stress below the yield 
stress, because the operating stress in gas pipelines is virtually around one half of the yield stress (and 
does not exceed two thirds of the yield stress even in intrastate high-pressure gas transmission 
pipelines). Calculations reveal that in order to comply with this, the depth of the axial semi-elliptical 
cracks should be greater than one half of the wall thickness. Oblique cracks should be even deeper, as 
the normal stress component opening these cracks is smaller. If the crack depth is to have a certain 
magnitude before the fracture test is begun, the depth of the starting slit should be smaller than this 
magnitude by the fatigue extension of the crack along the perimeter of the slit tip. At the same time, 
we should bear in mind that the higher the fatigue extension of the crack, the better the agreement with 
a real crack. 
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5.1 Procedure of the tests 

After the starting slits were made, the test pipes were subjected to water pressure cycling to produce 
fatigue cracks in the tips of the starting slits. The cycling was carried out in a pressurizing system, 
which included a high-pressure water pump, a collecting tank, a regulator designed to control the 
amount of water that was supplied and, consequently, the rate at which the pressure is increased in the 
pipe section. This was effected by opening by-pass valves. A scheme of the pressurizing system is 
shown in Fig. 4.  
 

 
 

Fig.4 Pressurizing system used for cyclic pressure tests of a test pipe body 
 

In cycling the cracks, the water pressure fluctuated between pmin = 1.5 MPa and pmax = 5.3 MPa, 
and the number of  pressure cycles was between 3 000 and 4 000. The period of a cycle was 
approximately 150 seconds. The cycling went on until a crack, initiated in one of the check slits, 
became a through crack. This moment was easy to detect, because it was accompanied by a water leak. 
By choosing an appropriate difference between the depths of the working slits and the check slits it 
was possible to obtain a working crack depth (= starting slit depth + fatigue crack extension) 
approximately of the required size. To run a test for a fracture, however, it was necessary to remove 
the check slit which had penetrated through the wall of the test pipe from the body shell and to repair 
the shell, e.g. by welding a patch in it. 

After removing the check slit with a crack which penetrated through the wall, and repairing the 
shell of the test pipe, the pipe was loaded by increasing water pressure to burst. The test procedure, 
which was common to all test pipes, will now be briefly described for the DN1000 pipe shown in Fig. 
3. As the figure suggests, slits A, A´, B and B´ were oriented along the axis of the pipe. The nominal 
length of notches B, B´ had twice the length of notches A, A´, but they were shallower. As mentioned 
above, cracks at the slit tips were extended by fluctuating water pressure, and this proceeded until the 
cracks from the check slits (BK, BK´) grew through the wall and a water leak developed. Then the 
damaged parts of the shell were cut out, patches were welded in their place, and the test pipe was 
monotonically loaded to fracture at the location of crack B or B´. The burst of the test pipe at crack B 
is shown in Figs. 5 and 6 (in detail).  
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Fig.5 Burst initiated on the slit B with a fatigue crack 
 

 
 

Fig.6 Burst initiated on the slit B - detail 

Evidently, at the instant of fracture the crack spread not only through the remaining ligament, but 
also lengthwise. It means the LBB criterion was not observed. After removing the part of the pipe 
shell with crack B, a patch was welded in and the second burst test followed. In the Table 2 there are 
extracted from Table 1 the numerical values of the geometrical parameters, the J-integral fracture 
values, the Ramberg-Osgood constants, the fracture pressure and the fracture depth for cracks B and 
B´, respectively.  

 

5.2 Prediction of fracture parameters 

Fracture parameters for a cracked pipe, i.e. the crack size for a given pressure and/or the pressure for a 
given crack size, can be predicted by solving Eq. 12 (GS method) or Eq. 13 (FC method) for the 
unknown fracture parameter ( e.g. crack depth a and/or pressure p). 
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Jcr in Eq. 12 and 13 is the critical magnitude of the J integral – the fracture toughness – taken here 
as the value Jm and α, n, σ0 are the Ramberg-Osgood parameters of the steel in the hoop direction. 

As it can be deduced from Table 1 the crack B fractured first, namely when the water pressure 
reached the value p = 9.55 MPa. The damaged part of the pipe shell was then cut out, the fracture 
surfaces were released to enable their fractographic examination. The missing part of the shell was 
replaced by welding a patch on it. In the second burst test the crack B´ fractured at the pressure p = 
9.86 MPa. After cutting out the damaged part of the pipe shell the fracture surfaces were released and 
were then subjected to fractographic examination. The results are digestedly presented in Table 2. 

Tab 2. Some characteristics referring to crack B and crack B´ 

Characteristics Crack B Crack B´ 
CRACK DIMENSIONS 
half-length, c (mm)  115 127 
depth in fracture, af (mm) 7.1 6.7 
RAMBERG-OSGOOD PARAMETERS 
α / n /σ0 (MPa) 5.92 / 9.62 /536 5.92 / 9.62 /536 
FRACTURE TOUGHNESS 
Jcr = Jm (N/mm) 439 439 
FRACTURE PRESSURE  
pf (MPa) 9.55 9.86 

 

It is seen from here that the crack depth at fracture was 7.1 mm for crack B and 6.7 mm for crack 
B´. These values are also shown in the last two columns of Table 1. 

Now let us predict the fracture conditions according to engineering approaches, and compare the 
prediction results with real fracture parameter values (pressure, crack depth). As it was already stated 
the procedure for verifying the predictive engineering methods involves determining either the fracture 
stress for a given (fracture) crack depth or the fracture crack depth for a given (fracture) pressure. To 
illustrate this, we select the latter case – i.e. determining the fracture depth of a crack for a given 
(fracture) pressure. We will not use directly Eqs. 12 and 13 but general dependences of the J integral 
(given by the left-hand side of  Eqs. 12 and 13) on the crack depth a. Fig. 7 shows the J-integral vs. 
crack B depth dependences, as determined by the FC and GS predictions for the fracture hoop stress 
corresponding to the measured fracture pressure. When using appropriate equations to determine J 
integrals, the following parameters were used: D = 1018 mm; t = 11.7 mm ; p = pf  = 9.55 MPa; c = 
115 mm; α = 5.92; n = 9.62; σ0 = 2.07×536 = 1110 MPa (i.e. C = 2.07).   

Similarly, Fig. 8  shows J - a dependences for crack B´. 
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Fig.7 Prediction of the fracture depth for the crack B  ( p = pf = 9.55 MPa and C = 2.07) 
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Fig.8 Prediction of the fracture depth for the crack B´  ( p = pf = 9.86 MPa and C = 2.0) 
 

6. Conclusions 

On the basis of both experimental work and a fracture-mechanical evaluation of experimental results, 
an engineering method has been worked out for assessing the geometrical parameters of critical axial 
crack-like defects in a high-pressure gas pipeline wall for a given internal pressure of a gas.  
The method makes use of simple approximate expressions for determining fracture parameters K, J, 
and it accommodates the crack tip constraint effects by means of the so-called plastic constraint factor 
on yielding, C. Involving this idea in the fracture analysis leads to multiplication of the uniaxial yield 
stress by the C factor in the expression for determining the J-integral.   

Two independent approximate equations for determining the J-integral provided very close 
assessments of the critical geometrical dimensions of part-through axial cracks. 

With the use of the crack assessment method proposed, the critical gas pressure in a pipeline can 
also be determined for a given crack geometry.   
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