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Abstract:  

ε

The secular equation for the surface (Rayleigh–edge) waves propagating in a thin semiinfinite 
anisotropic elastic continuum is derived. The secular equation is obtained as a quartic one for the 
squared wave velocity. Some numerical examples are shown. 
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1. Introduction 

 The traditional way of deriving the secular equation for Rayleigh-edge waves propagating in the 
direction of the x1-axis in an anisotropic elastic half-plane x2 ≥ 0 is to find a general steady-state 
solution for the displacement components that vanishes at x2 = ∞. This involves the computation of 
quartic equation roots that depend not only on material constants but also on wave velocity. The 
secular equation (explicit or implicit) is then obtained by vanishing of the surface traction at x2 = 0. 
For the solution of such secular equation it is necessary to precompute some roots of characteristic 
quartic equation. The method shown in this paper leads to explicit secular equation that depends on 
material constants only. 

2. Preliminaries  

We suppose that material and body axes of the 2D anisotropic linear elastic medium in the state of 
plane stress are denoted by X1, X2 and x1, x2 respectively. Third axis x3 is identical with material axis 
X3 and constitutes axis of possible rotation of principal material axes X1, X2 from body axes x1, x2. Due 
to the plane stress it holds σ33 = σ23 = σ13 = 0. In this paper we will assume that principal material 
axes X1, X2 coincide with body axes x1, x2.  For considered material the relationship between the stress 
σij and strain εij components is given by 
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where Cij denote the elastic stiffnesses. The strain components εij are related to the displacement 
components u1, u2 through  

( ), ,2 , ( ,ij i j j iu u i jε = + = 1,2).                                                      (2) 

The equations of motion, written in the absence of body forces, are  

, ,ij j iuσ ρ= ⋅                                                                        (3) 

where ρ is the mass density and the comma denotes differentiation with respect to xj (j=1,2). 
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3. Rayleigh waves 

The propagation of a Rayleigh wave along an edge of a semiinfinite 2D anisotropic medium is 
modeled. It is supposed that corresponding displacement and stress fields have the forms 

1 1( ) ( )
1 2 2 1 2 2( , , ) ( ) , ( , , ) ( ) ( , 1,2) ,i k x c t i k x c t

s s rs rsu x x t U k x e x x t k k x e r sσ⋅ − ⋅ ⋅ − ⋅= ⋅ ⋅ = ⋅Σ ⋅ ⋅ =      (4) 

where k is the wave number and c is the wave velocity. The boundary conditions of the problem are 

2 (0) 0, ( ) 0 , ( 1,2)j jU jΣ = ∞ = = .

2c Uρ

                                                       (5) 

Substituting (4) into (3), the equations of motion reduce to (the prime denotes differentiation with 
respect to k⋅x2) 

2
11 12 1 12 22 2, .i c U iρ′ ′⋅Σ + Σ = − ⋅ ⋅ ⋅Σ + Σ = − ⋅ ⋅                                       (6) 

Since no boundary conditions are prescribed for σ11 and consequently also for Σ11 , this component 
may be eliminated. After some algebra we obtain a system of four ordinary differential equations of 
the first order for unknowns U1, U2, Σ12, Σ22 . The system may be written in a matrix format 

3 22 26

1 1 11
1

2 26 66
2 2

1 1 1
12

12 2 3 2
22

1 122
2

0
,

0

0 0

d C Ci i
d d dU U
d C CiU U
d d d

d d dc i i
d d d

c i

ρ

ρ

 − −  ′
 

1

  
    ′ − −    = ⋅     Σ′   Σ  − ⋅ −   Σ  ′ Σ   

− ⋅ −  

                                     (7) 

where d, d1, d2, d3  are coupled by the relation 

11 1 12 2 16 3 .d C d C d C d= ⋅ − ⋅ + ⋅                                                               (8) 

It is easily seen that the symbol d represents the determinant of stiffness matrix C  (see (1)) and d1, d2, 
d3 are subdeterminants of . From the positive definiteness of stiffness matrix  it follows that d, dC C 1 
are positive. So we have 

10 & 0 .d d> >                                                                           (9) 

Denoting the stress vector T and displacement vector U as 

{ } { }1 2 1 2,
TTT T U U= =T U ,                                                                  (10) 

where T1 = Σ12 , T2 = Σ22 then the above system of four equations may be rewritten as 

1 2

3 4

.
′    
= ⋅    ′    

M MU U
M MT T

                                                                  (11) 

The submatrices , ,  and  are given by  1M 2M 3M 4M
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Besides this, it holds that 
2

1 1 2 2 2 3 3 3 4 1 1, , ,T Ti cρ= ⋅ = = = − − ⋅ ⋅ = = = ⋅M N M N N M N I M M M N                (13) 

Symbols N1, N2, N3 appearing in the relation (13) are submatrices of the fundamental elasticity matrix 
N introduced by Ingebrigtsen and Tonning (1969). Symbol I is identity matrix of size 2. It is supposed 
that matrix M3 is not singular. It means that the Rayleigh wave propagates at a velocity distinct from 
that given by 2

1
.dc dρ ⋅ =  With this assumption, the derivative of the second vector line of the 

system (11) yields relation for . Substituting for ′U ′U  into first vector line of (11) we get the relation 
for . Inserting the relation for  into second vector line of the system (11) gives after some matrix 
manipulations  

U U

 α β                                                            (14) ,i′′ ′⋅ − ⋅ ⋅ − ⋅ =T T Tγ 0
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where real and symmetric matrices α β  are given by  , , γ
1 1 1

3 1 3 3 1 2 1 3, ,T Ti− − −= ⋅ = ⋅ + ⋅ = − ⋅ ⋅M M M M M M M Mα β γ                       (15) 

The system (14) for traction components T1 = Σ12 , T2 = Σ22 is more convenient to work with than the 
corresponding system for displacement components, because the boundary conditions, instead of (5), 
are now homogeneous. It holds 

(0) ( ) 0 , ( 1,2) .j jT T j= ∞ = =                                                         (16)                         

The solution of (14) is assumed in the form 
2

2 0( ) i p k xk x e ⋅ ⋅ ⋅⋅ = ⋅T T                                                               (17) 

where  is a constant vector and p is a complex number with  to fulfil the 
boundary conditions at infinity. Introducing the solution (17) into the equation (14) we arrive at the 
following problem. It is necessary to solve the homogeneous system of two linear equations for 
unknowns T

{0 01 02
TT T=T Im( ) 0p >

01 and T02 which are the components of the vector . The system has the form 0T
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The homogeneous system (18) will have a nontrivial solution if and only if its determinant of the 
matrix is zero. This leads to a quartic characteristic equation in p. It has the form 

4 3 2
11 22 22 11 11 22 22 11 11 22 11 22( )p p p pα α α β α γ α γ β γ γ γ⋅ ⋅ − ⋅ ⋅ + ⋅ + ⋅ ⋅ − ⋅ ⋅ + ⋅ = 0 ,          (19) 

where the real coefficients , ,ij ij ijα β γ correspond to matrices , ,α β γ  , respectively. If a quartic 
equation has real coefficients, then either i) all roots are real or ii) there is an even number of complex 
roots (i.e. 4 or 2 complex roots), in conjugate pairs, see Schwarz (1958). First case i) may be discarded 
due to assumption . Second case ii) falls into three possibilities. There are two distinct 
roots p

Im( )p > 0
1 ≠ p2 with positive imaginary parts. Then the general solution to (14) takes the form 

1 2 2 2(1) (2)
2 1 0 2 0( ) i p k x i p k xk x q e q e⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ = ⋅ ⋅ + ⋅ ⋅T T T .                                        (20) 

where  correspond to p(1) (2)
0 0,T T 1 , p2 respectively. Symbols q1, q2 are arbitrary constants. Second 

possibility covers the case p1 = p2. It gives the general solution to (14) as 
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1 2 1 2(1) (1)
2 1 0 2 2 0( ) i p k x i p k xk x q e q k x e⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ = ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅T T T                                     (21) 

The case p1 = p2 seems to be not important from point of view of practical application. Third 
possibility is represented by only one root p1 with positive imaginary part. Then the general solution to 
the equation of motion (14) has the form 

1 2(1)
2 1 0( ) i p k xk x q e ⋅ ⋅ ⋅⋅ = ⋅ ⋅T T                                                        (22) 

Due to boundary conditions at x2=0 (see (16) where T1(0)= T2(0)=0 and the conditions that T01
(1), T02

(1) 
are not simultaneously zero we obtain q1=0. It leads to trivial solution 2( ) 0k x⋅ =T  and therefore 
this possibility may now be safely discarded. 

Applying zero boundary conditions at x2=0 into (20) we get another homogeneous system in 
unknowns q1, q2. This system will have a nontrivial solution if the determinant is zero. It leads after 
some algebra to the desired secular equation that is quartic one in ρ⋅c2. All the coefficients of the 
secular equation are real and depend on material constants only. 
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