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VALIDATION OF THE POINT-MASS MODELLING APPROACH FOR
FIBRES IN THE INVERTED PENDULUM MODEL

P. Polach, M. Hajzman™, O. Tugek

Abstract: Fibres, cables and wires can play an important risiedesign of many machines. One of
interesting applications is replacing the chosegidielements of a manipulator or a mechanism with
fibres. The main advantage of this design is a@reant of a lower moving inertia, which can leadto
higher mechanism speed and lower production césthosen inverted pendulum attached to a frame by
two fibres serves as a typical testing systemHeriivestigation of the fibres properties influercethe
system dynamic response. Motion of the penduluthi®fnonlinear system is investigated using the
alaska simulation tool. The sophisticated point-massefibrodel is validated on the basis of the results
obtained using a massless fibre model. In additithe, equation of motion based on the massless
approach is studied in terms of solution existesnog its uniqueness.

Keywords: Inverted pendulum, fibres, multibody modelling, vibration.

1. Introduction

One of interesting applications of cables or fibiggeplacement of the chosen rigid elements of
manipulators or mechanisms by those flexible eldmé@han, 2005). The main advantage of this
design is the achievement of a lower moving inesihich can lead to a higher machine speed and
lower production costs. Drawbacks can be associai#idl the fact that cables should be only in
tension (Smrz & ValaSek, 2009; ValaSek & Karasdd)9 in the course of a motion. The possible
cable modelling approaches should be tested andghigability verified in order to create efficien
mathematical models of cable-based manipulatorslgnatended for the control algorithm design.
The motion of the inverted pendulum driven by twiyds attached to a frame (see Fig. 1), which is a
simplified representation of a typical cable maitapar, is investigated using treaska simulation
tool (and using an in-house software created in M#TLAB system). The influence of some
parameters of this system has already been inadstigThe influence of the actuated fibres motion o
the pendulum motion in the case of their simultaise@armonic excitation was investigated in Polach
& Hajzman (2011c), in the case of non-symmetriart@ric excitation it was investigated in Polach &
Hajzman (2012a). The effect of the fibres’” masshenpendulum motion was investigated in Polach et
al. (2012), the effect of the fibres preload wasestigated in Polach & Hajzman (2012b).

The sophisticated point-mass fibre model is vaéidabn the basis of the results obtained using a
massless fibre model. The correctness of the poats fibre model is partly evident from Polach et
al. (2012), where results of simulations when adesng relatively “light” fibore made of thin carbon
fibres correspond well, up to the certain excitatfoequency, with the results of simulations with
massless fibre model (see also Chapter 5). Iniaddin this paper the equation of motion based on
the massless approach is studied in terms of salettistence and its uniqueness.
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2. Possibilities of the cable modelling

The cable (fibre, wire etc.) modelling (Hajzman &l&ch, 2011) should be based on considering the
cable flexibility and the suitable approaches canbhsed on the flexible multibody dynamics (see
Shabana, 1997). The simplest way how to incorparaées in equations of motion of a mechanism is
the force representation of a cable (e.g. Diao & RI209). It is assumed that the mass of cables is
small to such an extent comparing to the other ngparts that the inertia of cables is negligibithw
respect to the other parts. The cable is repreddntehe force dependent on the cable deformation
and its stiffness and damping properties. This wéyhe cable modelling is probably the most
frequently used model in the cable-driven robotatyits and control.

A more precise approach is based on the repregenitaitthe cable by a point-mass model (e.g.
Kamman & Huston, 2001). The cable can be consideitbér flexible or rigid. It has the advantage of
a lumped point-mass model. The point masses capntreected by forces or constraints.

In order to represent bending behaviour of cabhesr tdiscretization using the finite segment
method (Shabana, 1997) or so called rigid finiareints (Wittbrodt et al., 2006) is possible. Stathda
multibody codes (SIMPACK, MSC.ADAMSlaska etc.) can be used for this purpose. Other more
complex approaches can utilize nonlinear three-dgimmal finite elements (Freire & Negréo, 2006)
or can employ the absolute nodal coordinate fortimig ANCF) elements (Shabana, 1997).

Investigation of the possible approaches to the afiogl of the system of inverted pendulum
driven by fibres was investigated in Polach & Haggm(2011a) and Polach & Hajzman (2011b).
Implementation of the model based on the finitédriglements into thalaska simulation tool proved
to be unsuitable (Polach & Hajzman, 2011a). The AN&ements cannot be implemented in the
alaska simulation tool, verification on this approach wasried out utilizing the MATLAB system
(Polach & Hajzman, 2011b).

3. Inverted pendulum

Already mentioned inverted pendulum, which is dttatand driven by two fibres and affected by a
gravitation force, was chosen as an example ofirthestigation of fibres’ behaviour — see Fig. 1.
When the pendulum is displaced from the equilibripasition (i.e. “upper” position) it is returned
back to the equilibrium position by the tightenduld.

The massless model is shown in Fig. 1 (the usecchaddhe fibre based on the point-mass model
with lumped point masses corresponding to the rmoéaghe fibre is geometrically identical) — e.g.
Polach & Hajzman (2011c). The models of the systémie inverted pendulum are considered to be
two-dimensional.

Fibre

Fig. 1: Inverted pendulum actuated by the fibres.
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The system kinematics can be described by agg{ene degree of freedom) and prescribed
kinematic excitationx(t). The equation of motion is of the form

’ :li[é':l(‘b) [@ $ina, (@) - F, [0 &ina,(#) + ng% Esinyﬁj ) (1)

wherel, is the moment of inertia of the pendulum with exgpto the axis in point A (see Fig. 1),
a,(¢) and a,(¢) are angles between the pendulum and the filonéis, the mass of the pendulum,

g is the gravity acceleration amds the length of the pendulum. The forces actingh®e pendulum
from the fibre are

F.(¢) {kltﬁll(m =) +b19¥}m (1(#) 1),

ORI OB A ORR

where k(i = 1, 2) is the fibre stiffnesdy (i = 1, 2) is the fibre damping coefficient ak:) is the
Heaviside function. It is supposed, that forcesratte fibres only when the fibres are in tension.

()

Original lengthl, of the fibres is supposed to be constant and kiemgths|, (¢) and|,(¢) of
the fibres should be calculated in each time

4(¢)=y(d osp)" +(a+ x()- dsig)
1, (¢) :\/(d [eosp)” +(a- x(t)+ dising)” .

Each fibre is discretized using 10 point massabénfibre model based on the point masses (e.g.
Polach & Hajzman, 2011c). Each point mass is urtcaingd (i.e. number of degree of freedom is 3)
in two-dimensional model of the system of the imedrpendulum. The adjacent point masses are
connected using spring-damper elements. Only ggm@ing and damping) forces are considered in
these spring-damper elements. The stiffness andah®ing between the masses are determined in
order to keep the global properties of the masdiless model.

©)

The kinematic excitation is given by function
X(t) = x, Bin( 200 ), 4)

wherex, is the chosen amplitude of motidns the excitation frequency amds time. The influence of
the excitation frequency on the pendulum motiomvestigated. Excitation in points designated B and
C (see Fig. 1) is considered to be symmetricalhut any mutual phase shift) and of the same
amplitudexo.

4. Existence and unigueness of the solution of the pgulum motion equation

Before the validation of the point-mass fibre motied existence and uniqueness of the solution
should be studied. For sake of such an analysipendulum equation of motion based on the fibre
modelling by massless approach (1) can be rewrittdéorm

P =1 (1.0.9),
#(0)=0,
#(T)=0,
tafo,T],

()

where

f(t,¢,9) =B, [F(¢)Bina,(¢) - B,[F,(¢) Csina ,(¢) + B,Csing, (6)
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sina, (9) =7y fa=x(1). ™
_d _ migtl
BO_K’ 5= 20,

F.(¢) andF,(¢) are given by expressions (2)(¢) andl,(¢) are given by expressions (3) ahis
the time of the end of numerical simulation.

Function x(t) is considered to be smooth function of property

(1)< K. 8)
From previous estimate it is easy to derive thiv¥dhg condition

x(t) <K,

where from the physical point of view const&nfulfills
d-a<K<d+a.

Constants, d, |,, K, K, k (i=1,2),b (i=1,2) in equations (1), (2), (3), (8) are pusitieal
numbers.

It is reasonable to suppose that velocity of pemtulk bounded, i.e. there is a positive consiant
such that

#(t)|<R. 9)

Based on expression (2) it can be seen Fhéxt) (i=1, 2) is discontinuous due to appearing the
Heaviside function. Hence functioh(t,¢,¢) on the right hand side of (5) is also discontirmiand

nonlinear. Thus it is obvious that there is no sofufor ¢ 0C?, where C*, k=2, is space of all
functions such that theth derivative exists and is continuous.

4.1. Preliminaries

Throughout this section a notaticj)ﬁ] for absolute value ilR and space
ci(jor])={unc((o.1] &) ()= 0, ©f 0.3}

will be used.

Let T >0 be given and let
f(t,u,v):[0,T]xRxR - R

be a mapping satisfying the Carathéodory condit{erg. Drabek & Milota, 2007; Raghkova et al.,
2009), which are

1. f(tu,v) is continuous ir(u,v) for almost allt0[0,T],
2. f(t,u,v) is measurable infor fixed (u,v),
3. for each compact set (1 R?, there is a functior(t) O Ll([O,T]) such that
|f (t,u,v)|< h(1) for a.e.t0[0,T] and all(u,v) O« (10)

;
whereL, is space of measurable functions such fhiaft)] Ceit<co.
0

Following theorems with proofs can be found in Ratova et al. (2009) and Schmitt &
Thompson (2004).
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Theorem 1 Let f(t,u,v) satisfy the Carathéodory conditions and assume that tiseaefunction
h(t)O L ([0.T]) such that

|f (t,u,v)|< h(1) for a.e.t0[0,T] and Ou,vOR.. (11)
Then problem (5) has a solution.

Theorem 2Let f (t,u,v) satisfy the Carathéodory conditions and

| (tu,v)- £(£0,9)|< AQu-T+ Al v, Ou,v,0,VOR, t0[0,T], (12)
where A, A are positive constants such that
2
A;ZEF N AHEF <1 (13)

Then problem (5) has a unique soluti¢rﬂC§([0,T]), with ¢ absolutely continuous and equation
(5) being satisfied almost everywhere.

4.2. Main qualitative result

The solvability of problem (5) is investigated in thidbshapter. It is known that there exist points in
[O,T] where functionf (t,u,v) is discontinuous and the Lebesgue measure of the gets# points

is equal zero. Thus for almost al]][O,T] is f (t,u,v) continuous, it means the first condition of the
Carathéodory conditions is satisfied. The second dondi obviously satisfied, too.

Now if the sameR as in (9) is usek =[-R, R x[~ R R can be chosen. Then the inequality (10)
will be fulfilled with h(t) in the form

)= BE( Y e ) B9 ISP D

<(G+ar(Cro)farla B+ T & B+ aB)l & K= b)

where
—_ IO - IO
C°‘B°E"1[E“—\K+<a-d>\} o %DK[E1+—\K—<a- d)\]’
c._ BB . _ B

(K+(a-a))" ™ (k-(a-d)’
so h(t) is element ofL,. Therefore f (t,u,v) satisfies the Carathéodory conditions and assumptions
of Theorem 1 too.

Condition (12) of Theorem 2 remains to be checkeldolds

I (t,u,v) - £(T,7)< ac‘m(ug%c@ a % ))- ——yg@[q & K))-

(14)

(15)

[Fz(u,v)BIC;E—:;EQa—A ))- R __\OEI%EQa— X )J+ Blsin u sin &

K + K (16)
o g9l ey K g

R

(K+(@-d))* (K-(a+d))
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In estimations (14) and (16) inequalities
sin(Jj<1, |cogf|< 1, | sim- simj<|u-T ,|H(D|<

1 <1 (17)

Jo-2itfas X(9)sinue (2 [K=(a-d)

and (9) were used.

It can be seen comparing (13) and (16) that

A=B
and
(18)
_ 2 b b,
=d K
A=dRQar k) (K+(a—d))2+(K—(a+ d))2
Finally if function x(t) can be chosen such tﬂa(t)| < K =d then one gets
A:dEB)EGaw)Z[qbﬁQ)_ (19)

a2
If inequality (13) holds forA,, A andT it was proven that unique solution

¢0C5([0,7])
of (5) exists.

Now T can be chosen arbitrarily so it might happen thatitmn (13) would not be satisfied and
problem (5) would not have a solution. Thus it isidifft to find or proof other theorem which has
less restrictive condition then (13). Sdlifvill be chosen in order to fulfil (13) then a unésolution
exists, which is absolutely continuous.

5. Numerical simulations

5.1. Parameters of pendulum models

The most important model parameters (see Fig. 1) &relm, a=12m, d=0.75m,

Ia =3.288 kgi’, m=9.864 kg, stiffness k =8.26410° N/m (=1, 2), damping coefficient

b =510k NE/m § =1, 2). In the case of the point-mass fibre modey @ mass of fibre was
considered (in contradiction to Polach & Hajzman, 2Q1Rolach & Hajzman, 2012b; Polach &
Hajzman, 2011c; Polach et al., 2012; Polach & Hajzr@@d2a). mass of one fibre is 0.1 grams. To
compare: mass of the so far lightest considered (caneah)ibre was 3.846 grams — Polach et al.
(2012). The natural frequency of the linearized syst the inverted pendulum in equilibrium
position at consideration the massless fibre model #1320

5.2. Verification of the point-mass fibre model

The kinematic excitation amplitude (see Eq. ¢4)F 0.02 m was chosen (as in Polach & Hajzman,
2011a; Polach & Hajzman, 2011c; Polach et al., 2®d#ach & Hajzman, 2012a and Polach &
Hajzman, 2012b). Excitation frequenitywas considered in the range from 0.1 Hz to 200 Hz.

Time histories and extreme values of pendulum agg{maximum value of pendulum angle at
quasi-static loading i® = 1.52°; minimum value of pendulum angle at quagiestaading is logically
¢ = —1.52°) are the validated quantities. Selectedlt® of the numerical simulations are presented in
Figs 2 to 22. Simulation time is 10 seconds. It wastestat after this period the character of the
system response to the kinematic excitation does nageh@.g. Polach & Hajzman, 2011c).

Generally, the pendulum motion is influenced by éleitation frequency of the moving fibres —
Polach & Hajzman (2011a); Polach & Hajzman (2011c)a¢toet al. (2012); Polach & Hajzman
(2012a); Polach & Hajzman (2012b) and Figs 2 to 22.
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Extreme values of pendulum anghat consideration the massless fibre model and the-pwias
fibre model are given in Figs 2 and 3. Absolute dédfees of pendulum angteof point-mass fibre

mOdEl, i.e. (¢ma><massless_¢ max point mal: and (¢minmassless_¢ min point ma)s’ are given in FlgS 4 and 5.
Relative differences of pendulum anglep of point-mass fibre model, i.e.

(¢max massless_¢ max point mal! ¢ max mass and (¢min massless_¢ min poirt ma)s/ ¢ min mass’ are glven in FIgS 6 and

7 and in Tab. 1. For the purpose of comparing, Fige Z show even dependences of plotted
guantities of inverted pendulum attached using cafilwes (Polach et al., 2012). Remarkable time
histories of pendulum angleat various excitation frequencies are given in Bigs 22.

204§ I —
Massless

15 w@o Point-mass |
===~ Carbon fibre

Extreme values of pendulum angle [deqg]

-20 \ \ \ \ \ \ \ l l =
20 40 60 80 100 120 140 160 180 200

Excitation frequency [Hz]

Fig. 2: Extreme values of time histories of pendulunieaagn dependence on the excitation
frequency (in the whole investigated frequency range).
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Fig. 3: Extreme values of time histories of pendulugiewr in dependence on the excitation
frequency (up to 10 Hz only).
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Absolute differences of extreme values of pendulum angle
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Fig. 4. Absolute differences of extreme values of tistetes of pendulum anglein dependence on

the excitation frequency (in the whole investigateduency range).
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Fig. 6: Relative differences of extreme values of timries of pendulum anglein dependence on

the excitation frequency (in the whole investigateddency range).
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Tab. 1: Simulations results.

Excitation frequency f Relative differences of Relative differences of
[HZ] minimum values of pendulum  maximum values of pendulum
angle ¢ [%] angle ¢ [%]
0.1 -1.2 -0.7
0.5 -1.1 -0.3
1 -4.0 -3.6
2 -2.4 -0.4
3 -0.7 -0.6
4 -0.7 -0.6
5 -0.3 -0.2
6 -0.1 0
7 -0.6 -0.1
8 -0.3 -0.7
10 -0.4 0.1
20 1.8 0
30 -3.2 3.5
40 -3.3 1.2
50 1.9 -0.1
60 23.4 19.2
70 46.2 42.8
80 65.8 66.1
90 26.5 29.3
100 131.8 142.0
110 303.6 305.1
120 249.7 218.0
140 776.3 734.0
150 678.4 662.9
160 80.4 56.0
170 290.8 277.9
180 39.0 34.3
190 58.4 53.4
200 206.8 206.7

From the courses of the quantities in Figs 2, 4 arhd from Tab. 1 it is evident that a good
compliance of the results obtained at simulating witrerted pendulum models with the point-mass
fibre model and with the massless fibre model is upéceikcitation frequencies approx. 50 Hz (see
Figs 2 to 17). At higher excitation frequencigtly vibration of individual point masses and partl
probably also influence of numerical errors at sol@ggations of motion apparently show up in the
results of simulations (see Figs 18 to 22). This factvidemt especially from time histories of
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pendulum angle at excitation frequencies 60 Hz and 70 Hz in Figad® 19, in which time histories
of pendulum anglep of point-mass models with “slightly higher” mass of therified” fibre (by

10 %) and when considering carbon fibres are gimeaddition. Due to the change of the characters of
time histories of pendulum angieat simulating with inverted pendulum models with ffluent-mass
fibre model and with the massless fibre model (fromdhkcitation frequencies 60 Hz) it is necessary
to take the comparison of the extreme values of glend anglegp given in Figs 2, 4 and 6 and Tab. 1
cautiously (especially the relative differences ofexte values).

Relative differences of extreme values of pendulum angle

\ 1 1 T T
1 _
0 —
w N S e A el B
S ol gy
o |1
2am "\ |
547 .
2. © » i
(Point-mass - massless)/massless (maximum values)
6~ 6 i ——8— (Point-mass - massless)/massless (minimum values) | * 7
7L g e (Carbon fibre - massless)/massless (maximum values)| |
° @ (Carbon fibre - massless)/massless (minimum values)
-8 \ \ \ \ \ | | Kt |
1 2 3 4 5 6 7 8 9 10

Excitation frequency [Hz]

Fig. 7: Relative differences of extreme values of timtries of pendulum anglein dependence on
the excitation frequency (up to 10 Hz only).
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Fig. 8: Time history of pendulum angte excitation frequency f = 3 Hz, a) massless model,
b) point-mass model.
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Fig. 9: Time history of pendulum angte excitation frequency f = 4 Hz, a) massless model,
b) point-mass model.
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Fig. 14: Time history of pendulum angheexcitation frequency f = 20 Hz, a) massless model,
b) point-mass model.
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Fig. 15: Time history of pendulum angkeexcitation frequency f = 30 Hz, a) massless model,
b) point-mass model.
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Fig. 16: Time history of pendulum angteexcitation frequency f = 40 Hz, a) massless model,
b) point-mass model.
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Fig. 20: Time history of pendulum angkeexcitation frequency f = 100 Hz, a) massless model,
b) point-mass model.
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Fig. 21: Time history of pendulum angkeexcitation frequency f = 150 Hz, a) massless model,
b) point-mass model.
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Fig. 22: Time history of pendulum anghkeexcitation frequency f = 200 Hz, a) massless model,
b) point-mass model (other scale in vertical axis).

6. Conclusions

The approach to the cable modelling based on thepddmpoint-mass representations for the
investigation of the motion of the inverted pendulwas validated on the basis of the results obtained
using the massless fibre model. It was proved that po@rss fibre model is well applicable up to the
excitation frequency of approx. 50 Hz (which is gaiig sufficient for the control of the considered
cable-based manipulators). At higher excitation fregies partly vibration of individual point masses
and partly probably also influence of numerical esrar solving equations of motion show up in the

results of simulations. They are caused by considermgsil massless fibres in the point-mass fibre
model.

Experimental verification of the cable dynamics withthe manipulator systems and research

aimed at measuring the material properties of selditiggls are considered important steps in further
research.
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