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Abstract: The polymeric hollow fiber heat exchanger (PHFHE) is a modern type of apparatus which uses 
polymeric fibers, with a small diameter around 1 mm, for separation of the heat transfer mediums. The 
main goal of this work is to study different factors which affect heat transfer in polymeric hollow fibers 
(diameters, length and material of fibers, liquids temperatures and velocities) and to obtain conclusions 
concerning hollow fiber application. The values of external, internal as well as overall heat transfer 
coefficient, heat transfer rate, number of transfer units (NTUs), efficiency and pressure drops were 
obtained for both water-water and water-air applications. The special performed Delphi-based software 
was prepared to accelerate the computation process. 
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1. Introduction 

The first attempts to use polymers as a material for heat exchange equipment started over 40 years ago 
because of some benefits in comparing them with conventional metals (Whitley, 1957). Polymers as 
common are less expensive and easier to shape, form and machine than metals. Moreover, the energy 
required to produce a unit mass of plastics is about 2 times lower than that of common metals, making 
them environmentally attractive. The smoothness of the polymer surface begets low friction, hence a 
drop in pressure as well as to good fouling characteristics. Long-term fouling data of polymer heat 
exchangers is not available, but 76 h test with hard water was performed by Githehens (1965). 
Polymers have excellent chemical resistance and moreover, their hydrophobic surface promotes 
dropwise instead of filmwise condensation and, consequently, much higher heat transfer coefficients 
(Bigg et al., 1989). 

In accordance with Malik (2005) most of the commercially available polymer heat exchangers are 
being used in a corrosive environment or in low temperature applications (ice storage or solar heating 
of domestic hot water and swimming pools). In particular, plastic heat exchangers were also used for 
heat recovery in greenhouses (Rousse et al., 2000), in superfluid Stirling refrigerators or 3He-4He 
dilution refrigerators (Patel & Brisson, 2000). Lately, an interest in the application of polymeric 
materials in solar water heating systems has also emerged (Tsilingiris, 2000). Also a lot of different 
fields of plastic heat exchangers application (in the desalination industry, heat recovery, cooling and 
cryogenic industry, humidification, solar energy industry, microelectronics and computer industry) 
were quoted by Zaheed (2004). 

On the other hand, polymer materials thermal conductivity is low, usually between 0.1 and 0.4 
W/m·K which is 100-300 times lower than that of metals and considerably limits the use of polymers 
for heat exchanges equipment because of big magnitude of wall thermal resistance (Zarkadas & Sirkar, 
2004). In order to overcome this deficiency two approaches exist. The first one is to increase thermal 
conductivity of material. Excellent review of current state of the art of polymers utilizing was 
performed by T’Joen et al. (2008). In this review the material properties of polymers and polymer 
matrix composites were examined. It was shown that these materials do hold promise for use in the 
construction of heat exchangers, but that a considerable amount of research is still required into 
material properties and life-time behavior. The status of worldwide research in the thermal 
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conductivity of carbon nanotubes (CNT) and their polymer composites was done by Han & Fina 
(2011) as well as Guarded Hot Plate Method of increasing the through-thickness thermal conductivity 
of CNT composites was described by Han & Chung (2011). The investigation of finned-tube heat 
exchangers produced from pure and modified polypropylene was performed by Chen (2008). For the 
heat exchangers designed in that paper, when the plastic thermal conductivity can reach over 15 
W/m·K, it can achieve more than 95% of the titanium heat exchanger performance and 84% of the 
aluminum or copper heat exchanger performance with the same dimension. Using of increased 
conductivity polypropylene was investigated by Qin et al. (2012). Heat-conducting medium was 
developed by melt-mixing polypropylene with graphite particles (PP-g-MA). The overall heat transfer 
coefficient of graphite modified polypropylene hollow fiber heat exchangers reached 1228.7 W/(m2K) 
and the overall conductance per unit volume 1.1·106 W/(m3K). 

The second approach to decrease wall thermal resistance is to use thin walls between heat transfer 
mediums. The study of different construction thin wall polymeric heat exchangers was done by 
Scheffler (2008). Cross-flow plate heat exchangers made of crosscorrugated films of poly(ether ether 
ketone) (PEEK) were used to study air-air and water-water flow configurations by Zaheed (2004). The 
heat transfer and the hydrodynamic response of microcapillary films (MCFs) within round and 
elliptical channels (diameter 30 up to 500 μm) were investigated by Hornung et al. (2005). MCFs are a 
class of novel, extrusion-processed, polymer films containing an array of continuous, parallel, 
capillaries that run along the film’s length. These studies were added by Hallmark et al. (2005). 

Polymeric hollow-fiber based heat exchangers (PHFHEs) are also a type of thin-wall polymer heat 
exchangers, which were firstly proposed by Zarkadas & Sirkar (2004) as a useful alternative for lower 
temperature applications. The small devices containing a few hollow PP-based fibers with the liquids 
in parallel flow at temperatures up to 74○C were studied. The overall heat transfer coefficients of these 
devices were 647-1314 W/m2K for the water-water application. As more, proposed heat exchangers 
had very low values of the height of transfer, large numbers of transfer units (NTUs) for so 
comparably short devices, high values of heat exchanger effectiveness and overall 
conductance/volume rate. However, a number of important questions remained unanswered. Part of 
them were answered by Song et al. (2010) which study a lot of different PHFHEs with emphasis of 
application for thermal desalination processes and Qin et al. (2012) which study PHFHEs constructed 
from the modified thermal conductivity polymers.  

2. Theoretical consideration  

As usual polymeric hollow fibers and films have internal diameters around 0.05 – 2 mm and can be 
classified as the so-called microdevices (Herwig, 2001). The development of micro-mechanics during 
the last decades stimulated a great interest in heat transfer studies in micro-channels. A lot of 
theoretical and experimental investigations devoted to this problem were performed. There is no 
convincing explanation of the difference between experimental and theoretical results for laminar 
flow, and between experimental and semi-empirical results for turbulent flow (Yarin et al., 2009). On 
the one hand, several researchers argue that some new effects exist in micro-channels, e.g., Tso & 
Mahulikar (2000), Gad-el-Hak (2003). On the other hand, the phenomenon can be related to the 
discrepancy between the actual conditions of a given experiment and theoretical or numerical solution 
obtained in the frame of conventional theory (Herwig 2001; Herwig & Hausner 2003). 

Thus, there are some additional factors which possible can influence the heat transfer in 
microchannels can be determined in comparing with conventional theory: dissipation effects which 
determined by Eckert number (or Brickman number in accordance with Tso & Mahulikar (2000)), 
axial conduction which determined by Peclet number, conjugate effects and variable properties effects 
(Herwig, 2001). However, in accordance with Song et al. (2010) and Zarkadas & Sirkar (2005), the 
axial heat conduction, flow work and viscous dissipation are negligible for laminar flow in polymeric 
hollow fibers. Two different methods of determining the temperature profile inside the polymeric 
hollow fiber heat exchanger or the inside, outside and wall heat transfer coefficients were proposed. 
These methods are a simplified correlation suggested by Hickman and a rigorous solution of the 
extended Graetz problem by Hsu (Zarkadas & Sirkar, 2004). The simple relationship to calculate 
internal mean Nusselt number of thermal developing region was proposed by Zarkadas & Sirkar 
(2005) based on Hickman’s one and incremental heat transfer number calculated by Hsu’s approach. 
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2.1. Calculation of fiber heat transfer performance 

Firstly, the physical properties of the air and water were calculated based on inlet temperatures of 
liquids. The formulas obtained from ThermalSpreadsheets were used for determine the specific heat, 
dynamic viscosity, kinematic viscosity, thermal conductivity and density of air: 

݌ܥ ൌ 1.22295 ∙ 10ିଵ଴	ܶସ െ 5.35621 ∙ 10ି଻	ܶଷ ൅ 

൅	8.27169 ∙ 10ସܶଶ െ 0.295423 ∙ ܶ ൅ 1032.1  (1) 

ߤ													 ൌ 	5.41836 ∙ 10ିଵହܶଷ ൅ 2.52496 ∙ 10ିଵଵܶଶ ൅ 5.87333 ∙ 10ି଼ܶ ൅ 2.80339 ∙ 10ି଺ (2) 

ߥ ൌ 	െ1.14681 ∙ 10ିଵସܶଷ ൅ 8.87916 ∙ 10ିଵଵܶଶ ൅ 

																																																൅	4.55037 ∙ 10ି଼ܶ ൅ 5.43395 ∙ 10ି଺ (3) 

݇ ൌ 	
0.0316 െ 0.0243

100
∙ ݐ ൅ 0.0243  (4) 

ߩ ൌ 		353.179/ܶ  (5) 
where ݐ and ܶ are temperatures on a scale of Celsius and Kelvin respectively. The results of 
calculations in adequate range were compared and matched with data from Incropera & DeWitt (1996) 
so these formulas were chosen for use. The required physical properties of water were taken from the 
NIST Chemistry WebBook. The Prandtl and Reynolds numbers were calculated as followed: 

ൌ	ݎܲ 	
ܿ௣ ∙ ߤ	
ߣ

	  (6) 

ܴ݁ ൌ 	
ݑ ∙ ܦ
ߥ

  (7) 

where ܿ௣, ߥ and ߣ ,ߤ are specific heat, kinematic and dynamic viscosities, thermal conductivity 
respectively. 

The outside and inside diameters of fibers ܦ௢ and ܦ௜, the outside bulk flow velocity ݑ௢ and 
average inside velocity ݑ௜ were used respectively for calculation of outside (around the fibers) and 
inside (lumen) Reynolds numbers. Average inside velocity was calculated as followed: 

݅ݑ ൌ 	
ݐ,ݏܳ

ߨ0.25 ∙ ܰ ∙ ݅ܦ
2  (8) 

where ܳ௦,௧ and ܰ are volumetric flow rate through the tube (fiber) side and number of fibers 
respectively. The outside Nusselt number was calculated in according with Hilbert formula for single 
circular tube in cross-flow (Incropera & DeWitt, 1996): 

௢ݑܰ ൌ ܥ ∙ ܴ݁௠ ∙  ଴.ଷଷଷଷ (9)ݎܲ
where ܥ and ݉ are constants were determined in accordance with respective value of Reynolds 
number (Incropera & DeWitt, 1996). The outside convective heat transfer coefficient was calculated 
as: 

݄௢ ൌ 	
௢ݑܰ ∙ ݇௢
௢ܦ

  (10) 

where ݇௢ is thermal conductivity (W/m·K) of external liquid (water or air with the relevant 
temperature). 

The inside Nusselt number was calculated in accordance with asymptotic solution for thermal 
developing region proposed by Hickman (Song et al., 2010): 

1
ܷ௪

ൌ
௜ܦ

௢ܦ ∙ ݄௢
൅

௜ܦ
2݇௪

∙ ݈݊ ൬
௢ܦ
௜ܦ
൰ (11) 

௪ݑܰ ൌ
ܷ௪ܦ௜
݇௜

	  (12) 

ଷ்ݑܰ ൌ
ሺ48/11ሻ ൅ ௪ݑܰ
1 ൅ ሺ59/220ሻܰݑ௪

  (13) 

where are ݇௪ ൌ 0.18 W/m·K is thermal conductivity of isotactic polypropylene which quoted by Mark 
(1999) in the 0.12 – 0.22 range. Equation (13) yields ்ܰݑଷ values that fall between 3.66 and 4.364. 
The lower limit of this Nusselt number range is the limiting Nusselt number corresponding to the 
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constant wall temperature boundary condition (ܰݑ௪ = ∞) and the upper limit is the limiting Nusselt 
number corresponding to the constant heat flux boundary condition (ܰݑ௪	= 0) (Song et al., 2010). 
This simplified formula doesn’t take into account the influence of developing flow region, but have 
enough good accuracy for relatively long ducts (hollow fibers of small diameters, for example). Thus, 
the internal heat transfer coefficient was calculated based on internal Nusselt as: 

݄௜ ൌ
ଷ்ݑܰ ∙ ݇௜

௜ܦ
  (14) 

where ݇௜ is tube liquid thermal conductivity. Linear thermal resistance and linear overall heat transfer 
coefficient were calculated as followed: 

ܴ௟ ൌ
1

௢ܦ ∙ ݄௢
൅
ln	ሺܦ௢/ܦ௜ሻ
2݇௪

൅
1

௜ܦ ∙ ݄௜
  (15) 

݄௟ ൌ
1
ܴ௟

  (16) 

Furthermore, to estimate the influence of local thermal resistances on overall one the inside, wall and 
outside local to overall resistance ratios (ܴ௜ ܴ௟⁄ , ܴ௪ ܴ௟⁄  and	ܴ௢ ܴ௟⁄ ) were calculated: 

ܴ௜ ܴ௟⁄ ൌ
1

௢ܦ ∙ ݄௢
ܴ௟ ∙ 100%ൗ   (17) 

ܴ௪ ܴ௟ ൌ⁄
ln	ሺܦ௢/ܦ௜ሻ
2݇௪

ܴ௟ ∙ 100%ൗ   (18) 

ܴ௢ ܴ௟⁄ ൌ
1

௜ܦ ∙ ݄௜
ܴ௟ ∙ 100%ൗ   (19) 

Overall heat transfer coefficient was calculated based on heat transfer area of outside surface of fibers 
as: 

ܷ௢௩ ൌ
݄௟
௢ܦ

  (20) 

To obtain a thermal performance characteristics and predictions of outlet liquid temperatures the 
effectiveness-NTU method was used. Both outside ܥ௢ and inside ܥ௜ heat capacity rates of liquids were 
calculated as: 

ܥ ൌ ௣ܥ ∙ ߩ ∙ ܳ௙  (21) 
where ܥ௣, ߩ, ܳ௙ are isobaric specific heat, density and volumetric flow rate respectively, and heat 
capacity ratio: 

௥ܥ ൌ
௠௜௡ܥ

௠௔௫ܥ
  (22) 

where ܥ௠௜௡ ൌ minimum	ሺܥ௢, ௠௔௫ܥ ௜ሻ andܥ ൌ maximum	ሺܥ௢,  ௜ሻ. The number of transfer unitsܥ
(NTU) was obtained by the following relationships: 

ܷܰܶ ൌ
݄௢௩ ∙ ܣ
௠௜௡ܥ

  (23) 

where ܣ is a heat transfer area of outside surface of fibers and calculated based on external surface of 
fibers: 

ܣ ൌ ߨ ∙ ௢ܦ ∙ ݈ ∙ ܰ  (24) 
Because tube liquid flows through a large amount of small diameter fibers we must assume that tube 
liquid is unmixed. On the other hand the outside liquid flows without separation and so should be 
considered mixed. If the outside flow heat capacity rate value ܥ௢ was bigger than inside one ܥ௜ then 
effectiveness was calculated as (Incropera & DeWitt, 1996):   

ߝ ൌ ൬
1
௥ܥ
൰ ሺ1 െ ௥ሾ1ܥሼെ݌ݔ݁ െ  ሺെܷܰܶሻሿሽሻ  (25)݌ݔ݁

And vice versa, for bigger inside unmixed flow heat capacity rate value ܥ௜ effectiveness was calculated 
as: 

ߝ ൌ 1 െ ௥ିଵሼ1ܥሺെ݌ݔ݁ െ  ௥ሺܷܰܶሻሿሽሻ  (26)ܥሾെ݌ݔ݁
The maximum possible and actual heat transfer rate were obtained by 

ܳ௠௔௫ ൌ ௠௜௡ܥ ∙ ሺ ௧ܶଵ െ ௦ܶଵሻ  (27) 
ܳ ൌ ߝ	 ∙ ܳ௠௔௫  (28) 
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