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Abstract: A meshless local Petrov-Galerkin (MLPG) method is applied to solve bending of circular plate 
with piezoelectric layer attached at the top. Plate is analyzed as a 3D axisymmetric. Functionally graded 
material properties with continuous variation in the plate thickness direction are considered. 
Piezoelectric layer with applied nonzero voltage difference acts as a piezoelectric actuator, thus 
deflection of the plate can be controlled. Local integral equations are defined from the set of governing 
equations for mechanical and electric fields using appropriate test functions. Spatial variation of all 
physical fields is approximated by the moving least-squares (MLS) method only in terms of nodes. After 
performing all spatial integrations the system of ordinary differential equations is finally obtained and 
solved using Houbolt finite-difference scheme.  

Keywords:  Meshless local Petrov-Galerkin method (MLPG), moving least-squares (MLS) 
approximation, piezoelectric actuation, functionally graded materials. 

1. Introduction 

Advanced structural systems are required to be low-weight, high-strength and often to have also self-
monitoring capabilities. Recent progress in engineering and material sciences offers new possibility in 
design of such structures; the multifunctional composites (Gibson, 2010) composed of so-called smart 
materials. Among many smart materials the piezoelectric materials are dominantly used for control 
and suppression of structural vibration (Adachi et al., 1994) because of their sensory/active 
capabilities. In the recent years also the functionally graded materials (FGMs) (Suresh and Mortensen, 
1998) are widely applied in structural design because of their excellent properties. FGMs are multi-
component composite materials in which the volume fraction of the material constituents is varying in 
a predominant direction. This feature can be used to tune the selected properties into desired value. For 
example structural element can be designed to have the strength of steel on one side combined with 
the heat resistance of ceramics on the other side. 

Analysis of complex structural systems requires advanced numerical methods because of complex 
geometry or boundary conditions. Although the well established finite element method (FEM) is 
applicable to analysis of piezoelectric structures (Benjeddou, 2000), the analysis of materials with 
continuously nonhomogeneous properties such as FGMs can lead to certain difficulties.  The material 
coefficients in commercial FEM codes are assumed to be constant within an element, thus leading to 
piecewise homogeneous idealization of FGMs. Boundary element method (BEM) is also not suitable 
since proper fundamental solution is not available. In the last decade, an increasing attention has been 
devoted to meshfree or meshless methods for numerical analyses. The motivation is clear from their 
name; to avoid difficulties associated with mesh of finite elements such as expensive mesh generation, 
shear locking or above mentioned difficulties in modeling of continuously nonhomogeneous media. 
The meshless local Petrov-Galerkin (MLPG) method (Atluri, 2004) is considered as a basis for many 
meshless techniquess. Meshless formulations based on the MLPG were recently applied to laminated 
plates (Sladek et al, 2010a) and also to piezoelectric plates (Sladek et al, 2010b). Analysis of FGM 
materials using MLPG was presented in (Sladek et al. 2005, Sladek et al. 2008).  

In the present paper the analysis of functionally graded circular plate with homogeneous 
piezoelectric actuator is presented. Similar problem was analyzed by Tauchert and Ashida (1999) 
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using potential function method, although they considered only homogeneous material properties. Fig. 
1a) shows proposed geometry with FGM layer labeled by index 1 and piezoelectric layer by index 2. 
A circular plate together with piezoelectric actuator can be considered as a 3-D axisymmetric body 
with axis of symmetry passing through the center of the plate. With use of cylindrical coordinates the 
original 3-D axisymmetric problem can be reduced to 2-D problem considered on the cross-section of 
the plate (see Fig. 1b). An exponential variation of material properties is assumed for the FGM plate. 
The coupled electro-mechanical fields are described by constitutive relations and governing partial 
differential equations (PDEs). Nodal points are spread on the analyzed domain without any 
restrictions. Small local circular subdomain is introduced around each nodal point. Local integral 
equations (LIEs) constructed from governing PDEs are defined over these circular subdomains. For a 
simple shape of subdomains- like circles used here, numerical integration of LIEs can be easily carried 
out. Moving Least-Squares (MLS) approximation scheme (Lancaster & Salkauskas, 1981) is used to 
approximate the spatial variations of electric and mechanical fields. MLS scheme ensures C1 
continuity in each layer, but not across the material interface of plate and piezoelectric actuator. Thus 
MLS approximation is carried out separately in each considered layer. Additional coupling equations 
are considered for nodes on the interface to ensure the continuity of primary variables, normal 
components of electric displacements (surface charges) and the equilibrium of the tractions.  The 
essential boundary conditions are satisfied by the collocation of MLS approximation expressions for 
unknowns at boundary nodes. After performing the MLS approximation a system of ordinary 
differential equations (ODEs) for certain nodal unknowns is obtained. Houbolt finite difference 
scheme (Houbolt, 1950) is finally used to solve the system of ODEs. 

 

 

 

 

 

a) b) 

Fig. 1:  Geometry of the circular plate: a) original 3-D problem, b) assumed 2-D geometry 

2. Local integral equations 
Governing equations for general piezoelectric body under quasi-electrostatic assumption is given by 
the equation of motion for displacements and the first Maxwell’s equation for the vector of electric 
displacements as 

 ( ) ( ) ( ) ( ), , , ,ij j i it X t u tσ ρ+ =x x x x  (1) 

 ( ) ( ), , , 0i iD t R t− =x x  (2) 

where t, iu , ijσ , iD , iX , R , ρ are time, displacements, stresses, electric displacements, vector of body 

forces, volume density of free charges and material density, respectively. The dots over quantity 
indicate the time derivative. Omitting the acceleration term in Eq. (1) one can easily transform the 
dynamic problem to static one. The piezoelectric constitutive equations, representing the coupling of 
mechanical and electric fields, are given by 

 ( ) ( ) ( ), , ,ij ijkl kl kij kt C t e E tσ ε= −x x x  (3) 

 ( ) ( ) ( ), , ,i ikl kl ik kD t e t h E tε= +x x x  (4) 
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where ijklC , kije , ikh  represents elastic, piezoelectric and dielectric material constants, respectively. The 

strain tensor ijε  and electric field vector kE  are related to mechanical displacements iu  and electric 

potential ψ  by 

 ( ), ,

1

2ij i j j iu uε = +  (5) 

 
,k k

k

E
x

ψψ ∂= − = −
∂

 (6) 

The following essential and natural boundary conditions are assumed for the mechanical field 

 ( ) ( ), ,i iu t u t=x x  on uΓ , ( ),ij j in T tσ = x on tΓ , (7) 

and for the electrical field 

 ( ) ( ), ,t tψ ψ=x x  on pΓ , ( ),i iD n Q t= x on qΓ  (8) 

where uΓ , tΓ , pΓ , qΓ  are parts of the global boundary Γ with prescribed displacements, tractions,  

electric potential and surface density of electric field flux (surface charge density), respectively.       

Consider now 2-layer circular plate as shown in Fig. 1a. Base layer, with index 1, has radius 1r  

and height 1h , top layer, with index 2 and considered as piezoelectric, has the height 2h  but the same 

radius 2 1r r=  .  Owing to the plate geometry, it is convenient to use polar (cylindrical) 

coordinates ( ), ,r zθ=x .  

Coupled equations of piezoelectricity can be used for both layers, even if one is not made of 
piezoelectric material. This is done simply by decoupling the equations using all piezoelectric 
constants ikle =0, but keeping nonzero dielectric material constants for non-piezoelectric (base) 
material. 

Since the problem is assumed to be axisymmetric, it can be reduced to 2-D, if cylindrical 
coordinates are used, as in Fig. 1.b. Thus all physical quantities are independent on angular coordinate 
θ . Then, for the axisymmetric piezoelectric body we can write the governing equations (1), ( 2) in the 
following form 

 ( ) ( ) ( ) ( ) ( ) ( ), ,

, , , ,
, , , , , , , ,rr

rr r rz z r r

r z t r z t
r z t r z t X r z t u r z t

r
θθσ σ

σ σ ρ
−

+ + + =   (9) 

 ( ) ( ) ( ) ( ) ( ), ,

, ,
, , , , , , , ,rz

rz r zz z z z

r z t
r z t r z t X r z t u r z t

r

σ
σ σ ρ+ + + =   (10) 

 ( ) ( ) ( )
, ,

, ,
, , , , 0r

r r z z

D r z t
D r z t D r z t

r
+ + =  (11) 

Constitutive equation for mechanical fields (3) is then also rewritten into  

 11 12 13 31rr rr zz zc c c e Eθθσ ε ε ε= + + −  (12) 

 12 11 13 31rr zz zc c c e Eθθ θθσ ε ε ε= + + −  (13) 

 13 13 33 33zz rr zz zc c c e Eθθσ ε ε ε= + + −  (14) 
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 44 15rz rz rc e Eσ ε= −  (15) 

with mechanical strains specified to be 

                                        ,rr r ruε = ,  
1

ru
rθθε = ,  ,zz z zuε = ,  , ,rz r z z ru uε = +

 
                             (16) 

Finally, the constitutive relations for the electric fields are 

 15 11r rz rD e h Eε= +  (17) 

 31 31 33 33z rr zz zD e e e h Eθθε ε ε= + + +  (18)  

The MLPG method is based on the local weak form of the governing equations (9-11) that is 
written over local subdomain sΩ . Local subdomain is a small region taken for each node inside the 
global domain (Atluri, 2004). The local subdomains could be of any geometrical shape; in this paper 
they posses circular shape just for simplicity. Local weak forms can be written as 

 
( ) ( ) ( ) ( )

( ) ( )
, ,

1
, , , , , , , ,

, , , ,

s s s

s s

rr r rz z rr

r r

r z t p d r z t p d r z t r z t p d
r

X r z t p d u r z t p d

θθσ σ σ σ

ρ

∗ ∗ ∗

Ω Ω Ω

∗ ∗

Ω Ω

Ω + Ω + − Ω +  

+ Ω = Ω

  
  

 (19) 

( ) ( ) ( ) ( )

( )
, ,

1
, , , , , , , ,

, ,

s s s s

s

rz r zz z rz z

z

r z t q d r z t q d r z t q d X r z t q d
r

u r z t q d

σ σ σ

ρ

∗ ∗ ∗ ∗

Ω Ω Ω Ω

∗

Ω

Ω+ Ω+ Ω+ Ω =

= Ω

   
 

 (20) 

 ( ) ( ) ( ), ,

1
, , , , , , 0

s s s
r r z z rD r z t w d D r z t w d D r z t w d

r
∗ ∗ ∗

Ω Ω Ω
Ω + Ω + Ω =    (21) 

where ( )p∗ x , ( )q∗ x , ( )w∗ x  are the test functions. 

Local weak forms (19-21) are then the starting point for deriving local integral equations with the 
use of Gauss divergence theorem and appropriate test functions. Heaviside unit step functions are 
chosen as test functions for the presented problem in the same way as in (Sladek et al., 2010a). Local 
integral equations take the form: 

 
( ) ( ) ( ) ( )

( ) ( )

1
, , , , , , , ,

, , , ,

s s s

s s

rr r rz z rr

r r

r z t n d r z t n d r z t r z t d
r

X r z t d u r z t d

θθσ σ σ σ

ρ

∂Ω ∂Ω Ω

Ω Ω

Γ + Γ + − Ω +  

+ Ω = Ω

  
  

 (22) 

 
( ) ( ) ( ) ( )

( )

1
, , , , , , , ,

, ,

s s s s

s

rz r zz z rz z

z

r z t n d r z t n d r z t d X r z t d
r

u r z t d

σ σ σ

ρ

∂Ω ∂Ω Ω Ω

Ω

Γ + Γ + Ω + Ω =

= Ω

   
 

 (23) 

 ( ) ( ) ( )1
, , , , , , 0

s s s
r r z z rD r z t n d D r z t n d D r z t d

r∂Ω ∂Ω Ω
Γ + Γ + Ω =    (24) 

where s∂Ω  represents boundary of the local subdomain sΩ and in  is the unit outward normal vector. 
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A meshless approximation is convenient for numerical solution of local integral equations. The 
Moving least-squares (MLS) approximation can be used for the approximation of displacement and 
electric potential fields ( , )ru tx , ( , )zu tx , ( , )tψ x  by ( , )h

ru tx , ( , )h
zu tx , ( , )h tψ x  in terms of nodal values as 

   
1

ˆ( , ) ( , ) ( ) ( )
n

h i i
r r r

i

u t u t u tφ
=

≅ =x x x  (25) 

   
1

ˆ( , ) ( , ) ( ) ( )
n

h i i
z z z

i

u t u t u tφ
=

≅ =x x x  (26) 

   
1

ˆ( , ) ( , ) ( ) ( )
n

h i i

i

t t tψ ψ φ ψ
=

≅ =x x x  (27) 

where the nodal values ˆ ( )i
ru t , ˆ ( )i

zu t , ˆ ( )i tψ  are so called fictitious parameters for the displacements and 

electric potential, and ( )iφ x  is called the MLS shape function defined over n nodes located in a support 

domain of MLS approximation. However, MLS support domain must contain only nodes from a single 
layer bounded by the two-material interface due to discontinuities of strains and electric vector on the 
interface of the plate and actuator (Sladek et al, 2009). The appropriate derivatives can be obtained 
with use of the shape function derivative as shown in (Atluri, 2004). Derivatives of displacements and 
electric potential are then given as   

    , ,
1

ˆ( , ) ( ) ( )
n

h i i
k l l k

i

u t u tφ
=

=x x , , ,
1

ˆ( , ) ( ) ( )
n

h i i
l l

i

t tψ φ ψ
=

=x x  (28) 

with indices ( ), ,k l r z= . 

C1 continuity of the MLS approximation in each domain (layer) is ensured by the fourth-order 

spline type weight function used for the construction of the shape function ( )iφ x  (Atluri, 2004). 

Applying Eqs. (25-27) for approximation of trial functions ( , )ru tx , ( , )zu tx , ( , )tψ x  and their 
derivatives in constitutive relations (12-18) and their insertion into local integral equations (22-24) is 
leading to discretized local integral equations in the following form 

   

12
11 , 44 ,

1

11 12 11 12
, ,2 2

1

13 , 44
1

ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

s

s

s

n
i i i i
r r r r z z

i

n
i i i i i
r r r

i

n
i i i i
r z r z z

i

c
u t c n n c n d

r

c c c c
u t d

r r r r

u t d u t c n c n

φ φ φ

φ φ φ φ

ρφ φ φ

∂Ω
=

Ω
=

Ω
=

 + + Γ +  
 + + − − Ω −  

− Ω + +

 

 

 

x x x x x x

x x x x

x x x x ,
1

31 , 15 ,
1

( )

ˆ ( ) ( ) ( ) ( ) ( ) ( , , )

s

s s

n
i
r

i

n
i i i

r z z r r
i

d

t e n e n d X r z t dψ φ φ

∂Ω
=

∂Ω Ω
=

  Γ + 

 + + Γ = − Ω 

 

  

x

x x x x

 (29) 
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13
44 , 13 ,

1

44
, 33 , 44 ,

1 1

44
,

1

ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆˆ ( ) ( ) ( ) ( )

s

s s

s

n
i i i i
r r z z z r

i

n n
i i i i i
r z z z z r r

i i

n
i i i i
z r z

i

c
u t c n n c n d

r

c
u t d u t c n c n d

r

c
u t d u t

r

φ φ φ

φ φ φ

φ ρφ

∂Ω
=

Ω ∂Ω
= =

Ω
=

 + + Γ +  

 + Ω + + Γ + 

+ Ω −

 

  

 

x x x x x x

x x x x x

x x
1

15
15 , 33 , ,

1 1

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )

( , , )

s

s s

s

n

i

n n
i i i i i

r r z z r
i i

z

d

e
t e n e n d t d

r

X r z t d

ψ φ φ ψ φ

Ω
=

∂Ω Ω
= =

Ω

Ω +

 + + Γ + Ω = 

= − Ω

 

  



x x x x x

 (30) 

   

31
15 , 31 ,

1

15
, 15 , 33 ,

1 1

15
, 11

1

ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆˆ ( ) ( ) ( ) ( )

s

s s

s

n
i i i i
r r z z z r

i

n n
i i i i i
r z z r r z z

i i

n
i i i
z r r

i

e
u t e n n e n d

r

e
u t d u t e n e n d

r

e
u t d t h n

r

φ φ φ

φ φ φ

φ ψ φ

∂Ω
=

Ω ∂Ω
= =

Ω
=

 + + Γ +  

 + Ω + + Γ + 

+ Ω −

 

  

 

x x x x x x

x x x x x

x x , 33 ,
1

11
,

1

( ) ( ) ( )

ˆ ( ) ( ) 0

s

s

n
i i
r z z

i

n
i i

r
i

h n d

h
t d

r

φ

ψ φ

∂Ω
=

Ω
=

 + Γ − 

− Ω =

 

 

x x x

x

 (31) 

  

Collocation approach is used to impose essential boundary conditions directly, using MLS variable 
approximations (25-27). For natural boundary conditions local integral equations are written for the 
nodes on the global boundary. 

Interface between two layers of the plate represents a discontinuity. The plate must be partitioned 
to two patches with different material properties for the presented numerical modeling approach. 
Patches or layers are discretized by meshfree nodes individually. Double nodes are defined on the 
interface. One node belongs to each layer. Except the condition of coincidence of interface nodes there 
is no restriction on the node location in the presented approach. For these interface nodes one has to 
specify coupling conditions in order to ensure the continuity of displacements, potentials, flux of 
electric displacements and the equilibrium of the tractions across the interface as 

 1 2( , ) ( , )l l
r ru t u t=x x ,   1 2( , ) ( , ) 0l l

r rT t T t+ =x x  (32) 

 1 2( , ) ( , )l l
z zu t u t=x x ,   1 2( , ) ( , ) 0l l

z zT t T t+ =x x  (33) 

 1 2( , ) ( , )l lt tψ ψ=x x ,   1 2( , ) ( , ) 0l lQ t Q t+ =x x  (34) 

indices 1, 2 indicate the corresponding layer and lx  is an interface node. 

Collocation approach is again used based on the MLS approximation (7). For example, the 
equilibrium of radial displacements (first part of Eq. 32) is specified as 

 

1 2

1 2

1 1

ˆ ˆ( ) ( )
n n

i l i j l j
r r

i j

u uφ φ
= =

= x x  (35) 

In the same manner the equilibrium of tractions and electric charge can be specified, based on the 
second part of Eqs. (7, 8). 
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Collecting the discretized local integral equations together with the discretized boundary 
conditions and interface conditions, one obtains a complete system of ordinary differential equations 
(ODE) which can be rearranged in such a way that all known quantities are on the r.h.s. Thus, in the 
matrix form the system becomes 

 + =Ax Cx Y  (36) 

This system of ODE can be solved by the Houbolt finite-difference scheme (Houbolt, 1950; 
Sladek et al., 2010a). In this method “acceleration” term is defined as 

 2
2

2 5 4t t t t t t t
t t t

+Δ −Δ − Δ
+Δ

− + −=
Δ

x x x x
x  (37) 

where tΔ  is the time step. The value of the time-step has to be appropriately selected with respect to 
material parameters (elastic wave velocities). 

3. Numerical solution 

For the numerical examples functionally graded graphite/epoxy circular plate is considered with 
radius 1 0.3mr = and thickness 1 0.02mh = . For the top layer of the thickness 2 0.01mh =  PZT-4 

piezoelectric material is considered. The plate is loaded with uniform load of 0 10000Paσ =  and 
varying electric potential at the top. Potential at the interface is vanishing. For the approximation of 
unknown field quantities in FGM layer 847 nodes were used and 726 nodes were specified for the 
piezoelectric layer. Material properties of the graphite/epoxy layer are graded using exponential 
variations  

 0( ) exp( )ij ij ff f zγ=x  (38) 

where the symbol ijf  is commonly used for particular material coefficients and 0ijf correspond to 

the material parameters at the bottom surface of the FG layer.  It should be noted that various 
exponential coefficients fγ  can be used for the individual material parameters. In presented analysis 

two different values of the exponential coefficient 34.6575fγ =  and 20.273 are used for each graded 

material coefficient. For the first coefficient 34.6575fγ = material parameters are doubled with 

respect to ones at the bottom surface. In other words, such a gradation will gradually increase material 
coefficients defined at the bottom ( )0z =  to twice that large coefficients at the top ( )1z h=  of the 

graphite/epoxy plate.   

The material coefficients of the graphite/epoxy layer are: 
10 2

110 10.2 10c Nm−= ⋅ , 10 2
120 4.98 10c Nm−= ⋅ , 9 2

130 230 6.86 10c c Nm−= = ⋅ ,  
10 2

330 1.09 10c Nm−= ⋅ , 9 2
440 2.87 10c Nm−= ⋅ ,  2

150 310 330 0e e e Cm−= = = , 

11 1
110 3.09 10 ( )h C Vm− −= ⋅ ,   11 1

330 2.65 10 ( )h C Vm− −= ⋅ , 31578kg/mρ =  

Piezoelectric PZT-4 layer posses these material properties: 
10 2

11 13.9 10c Nm−= ⋅ , 10 2
12 7.78 10c Nm−= ⋅ , 10 2

13 23 7.43 10c c Nm−= = ⋅ ,  
10 2

33 11.5 10c Nm−= ⋅ , 10 2
44 2.56 10c Nm−= ⋅ , 

2
15 12.7e Cm−= , 2

31 5.2e Cm−= − ,     2
33 15.1e Cm−= , 

9 1
11 6.46 10 ( )h C Vm− −= ⋅ ,   9 1

33 5.62 10 ( )h C Vm− −= ⋅ , 37500kg/mρ = . 
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In the first numerical example two different exponential variations are applied. Variation 
represented by Eq. (38) increases (grades) material properties from bottom to the top, while following 
variation 

 ( )0( ) exp( )ij ij ff f d zγ= −x  (39) 

grades material properties in opposite direction. Constant d depends on the coefficients fγ , values d=3 

and d=2.5 are used, respectively. Results are compared to FEM-ANSYS solution with the fine mesh. 
For FGM material modeling the piecewise homogeneous approach is adopted. Fig. 2 presents 
variation of deflection for simply supported plate with the radial coordinate under static mechanical 
loading and vanishing surface charge density. For both gradation schemes the 
coefficient 34.6575fγ = . One can clearly observe that material gradation according to Eq. (39) gives 

lower deflection compared to Eq. (38). This must hold true since increase of material constants in 
direction towards the plate center has smaller effect on flexural stiffness compared to increase of 
material parameters out of the center, as in case of Eq. (39). Thus exponential variation (39) should be 
preferred in cases of 2-layer plates. 

 

Fig. 2:  Variation of central deflection with radial coordinate for simply supported plate with 
different material gradations 

In the Fig. 3 the effect of exponential coefficient fγ is observed. Pure mechanical load is applied 

again. Exponential variation (39) is assumed. One can observe that deflection of the plate with 
20.273fγ =  is very close to one obtained for variation (38) as shown in Fig. 2. Very good agreement 

between MLPG and FEM results can be observed. Effect of deflection suppression by active 
piezoelectric layer is well observed in Fig. 4. FGM exponential coefficient 34.6575fγ = is used. It is 

clearly observable that for FGM plate the deflection is almost totally suppressed. If electric potential is 
not specified, vanishing values of normal components of electric displacement must be specified.  
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Fig. 3:  Variation of central deflection with radial coordinate for simply supported plate with two 
different exponential coefficients 

 

Fig. 4:  Variation of central deflection with radial coordinate for simply supported plate under 
mechanical and electric load 

Clamped circular plates are also analyzed.  Both electric and mechanical loads are assumed. FGM 
exponential coefficient 34.6575fγ = is used again. Fig. 5 shows variation of deflection for clamped 

plates with homogeneous and FGM graphite/epoxy layer. Potential load 800ψ = − V is not sufficient 
to suppress the deflection completely as in case of simply supported plate, larger values have to be 
applied. Note that negative potential difference must be applied between the surfaces of piezoelectric 
layer. Positive values would act in opposite sense, thus increasing the deflection.  
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Fig. 5:  Variation of central deflection with radial coordinate for clamped plate under mechanical 
and electric load 

 

Response of simply supported 2-layer plate is also investigated under an impact mechanical load 
with Heaviside time variation. Numerical calculations are carried out for 100 time steps and a time-
step size 40.3 10 sτ −Δ = × . The time variation of the deflection at the plate center ( )10; 2r z h= = is 

given in Fig. 6. The value of the central deflection of the FGM plate is smaller than that of the 
homogeneous plate. It is due to the higher stiffness of the FGM plate. The peak deflection is shifted to 
shorter time instants for the FGM plate, where the flexural rigidity is higher and the mass density is 
the same for the FGM and homogeneous plates. Then, the wave velocities of the FGM plate are larger. 

 

Fig. 6:  Time variation of the central deflection for a simply supported plate under an impact 
mechanical load 

 

1216 Engineering Mechanics 2012, #48



 

4. Conclusion 

A meshless local Petrov-Galerkin (MLPG) method was presented for the modeling and analysis of 
plate bending of 2-layer circular plate with functionally graded bottom layer and active piezoelectric 
layer. Special treatment of material interface was employed through coupling of interface variables. 
The MLS approximation was adopted for approximation of unknown physical quantities in each layer 
separately. Proposed method is a truly meshless method as no elements were used for approximation 
or for integration of unknowns. Numerical examples showed the effect of material grading and active 
piezoelectric layer on enhancement of the plate’s flexural strength. 
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