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Abstract: In this paper, we present that the decomposition of the biharmonic equation into two Poisson 
equations is applicable to general case of boundary conditions and any shape of the boundary edge of the 
plate, if we use the Local Integral Equation (LIE) formulation and a meshless approximation for primary field 
variables. Besides the standard advantages of mesh free formulations remember the new advantage 
consisting in decreasing the order of the derivatives of field variables. Instead of the third order derivatives of 
the deflection field in the weak formulation for the biharmonic equation the highest order of the derivatives in 
the present weak formulation does not exceed the first order. Mostly, it is decreased also the order of the 
derivativesof new field variables in the expressions of the boundary conditions. Several illustrative examples 
are presented for comparison of accuracy, convergence and computational efficiency achieved by using 
various approaches.  

Keywords: Local Integral Equation formulation, meshless approximation, decomposition, biharmonic 
equation, Poisson equations 

1. Introduction 

It is well known that high order derivatives of field variables in the governing equations give rise to 
difficulties in solution of boundary value problems because of worse accuracy of numerically evaluated 
high order derivatives. The order of the differential operator can be decreased by decomposing this 
operator into two lower order differential operators with introducing new field variables. The relevant 
boundary densities in the decomposed problem are different from the boundary densities in the original 
boundary value problem. Therefore, sometime it can be problematic to express the original boundary 
conditions in terms of the new field variables and/or their derivatives. Especially, it is impossible in 
general in the boundary element formulations where the unknowns are localized and approximated on 
boundary alone.  

In two recent decades, solution of many engineering problems as well as problems of mathematical 
physics have been reformulated by using various mesh free formulations with meshless approximations. 
Such approximations belong to domain type approximations and the restrictions of boundary elements can 
be eliminated.  

In this paper, we present that the decomposition of the biharmonic equation into two Poisson 
equations is applicable to general case of boundary conditions and any shape of the boundary edge of the 
plate, if we use the weak formulation based on the Local Integral Equations (LIE) formulation and a 
meshless approximation for primary field variables. In the local weak formulation, the constant test 
function with the support on the sub-domain is utilized, what corresponds to integral satisfaction of 
physical balance principles (equilibrium of forces and force moments) on local sub-domains. To illustrate 
the robustness of the proposed formulation, we present also the weak formulation for the original 
biharmonic problem. The strong formulation is not considered because of the 4th order derivatives of 
deflections. Owing to the decomposition, the order of the derivatives in the governing equations is 
decreased form four to two. The prescribed boundary conditions are considered in each formulation in 
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strong form by collocation at boundary nodes. Two kinds of the meshless approximations are employed in 
this paper, such as the Moving Least Square (MLS) approximation (Lancaster and Salkauskas, 1981) and 
the Point Interpolation Method (PIM) (Liu, 2003). Besides the standard advantages of mesh free 
formulations remember that the domain-type character of the approximation enables us to express all the 
boundary quantities in terms of the new field variables and/or their derivatives on the boundary. 
Numerical examples with exact benchmark solution are considered for comparisons of accuracy, 
convergence and computational efficiency of various approaches.  

2. Physical decomposition of the governing equations  

In Kirchoff's theory of bending of thin plates (Timoshenko and Woinowsky-Krieger, 1959) the all physical 
quantities are expressed in terms us the functions of deflection  and/or their derivatives. For the plate 
of thickness h and midplane ! orthogonal to the axis x3, the tensor of moments can be expressed in terms 
of the second order derivative of deflection as 
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where D is the bending stiffness, E and ! is the Young modulus and Poisson ratio, respectively.  
The bending moment M and the twisting moment T on the boundary edge ! = "# are given as 
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where ni and ti are the Cartesian components of the unit normal and tangent vector on ", respectively. The 
transversal the shear force N and the equivalent shear force on the boundary edge are defined as 
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The governing equation for deflections of thin plane is given as  

   , ( ) ( )ij ijM q= !x x ,       (5) 

hence after substituting (11) to (5) we can obtain governing equation in form 
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with ( )q x  being the density of transversal loading applied on the plate surface. 

Usually, Poisson ratio is constant and the governing equation becomes 

   2 2 2 2 2
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If we shall consider the bending stiffness to be constant, then the governing equation is simplified as 

   2 2D w q! ! = .        (8) 

Three basic boundary conditions can be assumed on the boundary edge ": 

(i) clamped edge:  0w ! = ; 0w
n !

"
=

"
 

(ii) simply supported edge:  0w ! = ; 0M ! =        (9) 
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(iii) free edge:  0M ! = ; 0V ! =  

The fourth order derivatives of deflections in governing equations can give rise to serious difficulties 
not only in strong formulation for numerical solution, but also in weak formulation owing to inaccurate 
approximation of high order derivatives of deflections occurring in the integral equations as well as in 
boundary conditions. 

Therefore, it is expedient to introduce the new field variable defined as 

   2( ) : ( )m D w= ! "x x   for  !"x       (10) 

Then the governing equation (8) is split into two equations given by (10) and (11) 

   2 ( ) ( )m q! =x x   for.. !"x       (11) 

3. Weak formulation of governing equations 

The weak formulations of governing equations (10) and (11) corresponding to two field variables 
with assuming the bending stiffness to be constant, can be written as 
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The relevant boundary quantities { , / , , }w w M V! !n are expressed in terms of two field variables and their 
derivatives on boundary edges. 

 
4. Meshless approximation of fields variables 

In general, a meshless approximation uses a local interpolation to represent trial function with the values 
of the unknown variables at some randomly distributed nodes. Now, we shortly describe two kinds of 
meshless approximations. For the sake of brevity, we shall use the common notation ( )u x for the scalar 
fields ( )w x and/or ( )m x . 

Moving Least Square (MLS) approximation 

In the MLS-approximation, the polynomial basis 1{ ( )}mpµ µ=x  is employed and the expansion coefficients 
are found from minimization of weighted squares of residua at a finite number of nodal points (Lancaster 
and Salkauskas, 1981). The scalar field ( )u x  can be approximated as  

   
1
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N
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a
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=
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where N is the total number of nodes, ˆau is a nodal unknown different from the nodal value ( )au x , and 

( )a! x is the shape function associated with the nodal point ax . Instead of standard MLS-approximation, 
one can utilize the Central Approximation Node (CAN) concept of MLS-approximation (Sladek et al., 
2008). Let xq be the CAN for the approximation at a point x . Then, the amount of nodes involved into the 
approximation at x  is reduced a-priori from N  to qN , where qN  is the number of nodes supporting the 
approximation at the CAN qx , i.e. the amount of nodes in the set , where 
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( )aw x is the weight function associated with the node ax at the field point x . In this paper, we employ the 
Gaussian weights (Sladek et al., 2008). The MLS-CAN approximation is given as 
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where a is the global number of the a -th node from the qN nodal points a q!x !" . The CAN node can 
be selected as the nearest node to the field point x . 

The derivatives of the field variable ( )u x can be approximated by differentiating the approximation 
(15), i.e.  

  ( , )
, ,

1
ˆ( ) ( )

qN
q aa

i i
a

u u !
=

"#x x , ( , )
, ,

1
ˆ( ) ( )

qN
q aa

ij ij
a

u u !
=

"#x x , ( , )
, ,

1
ˆ( ) ( )

qN
q aa

ijk ijk
a

u u !
=

"#x x
         

(16) 

The evaluation of the shape functions and their derivatives at each field point is a numerical procedure 
which prolongs the CPU time. The relationships required in such numerical evaluations can be found in 
(Sladek et al., 2012)where Gaussian weights are used in MLS-approximation.  

It is worth of consideration the modification of shape functions and their derivatives. Making use the 
definitions 
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and adopting the modifications  
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one can guarantee satisfaction of the following equations 
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with the wave notation being omitted in Eq. (19) and in what follows. 

Point interpolation method (RBF+P) 
In this approximation the basis functions are taken as a combination of polynomials and radial basis 
functions (RBF) (Liu, 2003). Then, one can solve the problem of accuracy and numerical stability of the 
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approximation(Liu, 2003),(Sladek et al., 2008). We shall consider the same polynomial basis as in the 
MLS-approximation and the RBFs will be taken as multiquadrics 

   2
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with nc being the shape parameter.  

The approximation of the field variable ( )u x can be expressed by 
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i.e. formally, it is the same as in the MLS-approximation, but now the nodal unknowns are directly the 
values of the approximated field variable, since the shape functions obey the Kronecker–delta property 
( , ) ( )q a b

ab! "=x .  
The derivatives of the field variable are approximated as  
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Again certain numerical procedures are required for evaluation of the shape functions and their 

derivatives at a field point. For more details, we refer the reader to(Sladek et al., 2012).  

5. Rotationally symmetric bending of circular plates 

Having regard to the symmetry, the problem simplified when instead of Cartesian coordinates we use 
polar coordinates ( , )r ! , where 1 2( , ) ( cos , sin )x x r r! !=  and (.) / 0!" " # . Then 
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Since the boundary edge !  is a circle, the outer unit normal vector on !  is ,i in r= ± , where the lower 
sign is valid on the inner boundary edge in the case of the circular plate with central circular hole. The unit 
tangent vector on the boundary edge is 3 3 ,i ki k ki kt n r! != = ± . Thus, we may write on the boundary edge 
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where we have utilized the fact that  
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Two field variable formulation 

The governing equations (10) and (11) can be written now as 
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Thus, in view of (24)-(26) and (28), we may write 
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The weak form of the governing equations (28) and (29) is given by 
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From Eqs. (30)-(34), one can see that the weak formulation does not involves higher than first order 
derivatives of field variables. The numerical results corresponding to this formulation will be denoted by 
LIE(2xPoiss).  

One field variable formulation 

In order to see the effect of the proposed decomposition, we present also the standard formulation where 
all physical quantities are expressed in terms of deflections and their derivatives. The weak form of the 
governing equation  
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is given by 
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Hence, with assuming a constant loading, one obtains 
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In the case of symmetric problem for bending of circular plate, the integration can be performed in 
closed form. One can see that the third order derivatives of the deflection occur in both the weak form of 
the governing equation and the boundary conditions (on free edge). The numerical results obtained by this 
formulation will be denoted as LIE(biharmonic).  

Recall that exact solutions are available for some simple angular symmetric boundary value problems 
on circular plate (Sladek et al., 2012). 

6. Numerical examples 

Several numerical examples will be considered for angularly symmetric bending of circular plate for 
which exact solutions are available. Then, we can investigate the accuracy and convergence as well as 
computational efficiency of various presented formulations and techniques. The accuracy of numerical 
solutions of boundary value problems will be characterized by error norm defined as 
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in the formulation for one field variable, while for two field variables we shall use the definition 
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where N is the total number of nodal points. 

In all numerical computations, we have used a uniform distribution of nodal points and the radius of 
the sub-domain 0.1or h= with hbeing the distance between two neighbour nodes. The other parameters in 

the MLS-approximation have been taken as: radius of the interpolation domain 3.001ar h= , shape 

function parameter ac h= , cubic polynomial basis 4m = . In the PIM(RBF+P)-approximation, we have 
chosen: type of RBF – inverse multiquadrics with 1p = ! , number of multiquadrics around each 

node 16qN = , number of polynomials 7M = , shape parameter 2ac h= . As regards the geometry, we 
shall consider either the circular plate without any hole { ( , ); [0, ], [0,2 ]}ar r r! ! "# = $ % % or the circular 
plate with central hole { ( , ); [ , ], [0,2 ]}b ar r r r! ! "# = $ % % . Three kinds of the boundary value problems 
will be discussed: (A) [0, ]ar r! , clamped edge (CE) ar r= ; (B) [0, ]ar r! , simply supported edge (SSE) 

ar r= ; (C) [ , ]b ar r r! , simply supported edge (SSE) br r= , free edge ar r= . 

Now, we present the results for accuracy and convergence of numerical solutions of three considered 
boundary value problems with using the MLS-approximations for field variables in two different 
formulations LIE(biharm) and LIE(2xPoiss). Each formulation is combined with two techniques for 
creation of shape functions and their derivatives (denoted by S0 and S1). Fig. 1 shows convergence of 
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accuracy of numerical solutions of all considered b.v.p. by LIE(2xPoiss) with increasing the density of 
nodes (decreasing the hparameter in uniformly distributed nodes). The results are insensitive to the choice 
of S0 or S1 technique. On the other hand, the LIE(biharm) formulation yields the numerical solutions with 
unacceptable accuracy and without any indication of convergence (lines with empty symbols in Fig.2). 
This collapse could be explained by insufficient accuracy of the approximation of , ( )rrrw r , especially at 

endpoints br r= , ar r= . In order to verify this hypothesis, we have modified the LIE(biharm) formulation 

with replacement of the approximation of , ( )rrrw r by exact values , ( )ex
rrrw r . The renewal of convergence 

of accuracy of numerical solutions (lines with solid symbols in Fig.2) confirms the explanation of the 
collapse, but there is no proposal how to eliminate this collapse within LIE(biharm).  

 
 Fig.1 Accuracy and convergence of numerical solutions for three b.v.p. by LIE(2xPoiss) combined with 

MLS-approximations of field variables 

 
 Fig.2 Accuracy and convergence of numerical solutions for three b.v.p. by LIE(biharm) combined with 

MLS-approximations of field variables 

1152 Engineering Mechanics 2012, #45



From the above study of the accuracy of numerical solutions by two formulations implemented with 
MLS-approximations of field variables, the following conclusions can be drawn: 
(i)   only the formulations for decomposed problem yield meaningful results; the LIE(biharm) formulation 

fails because of inaccurate approximation of the higher order derivatives of deflections 
(ii) the influence of S1-modification for evaluation of shape functions and their derivatives on accuracy is 

negligible. 

Finally, we present the results for numerical solutions of the considered boundary value problems by 
two discussed formulations but implemented by PIM-approximations of field variables.  

 
 Fig.3 Accuracy and convergence of numerical solutions for three b.v.p. by LIE(2xPoiss) combined with 

PIM-approximations of field variables 

 
 Fig.4 Accuracy and convergence of numerical solutions for three b.v.p. by LIE(biharm) combined with 

PIM-approximations of field variables 
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It can be seen from Fig. 3 that in the case of b.v.p. (A) and (B), the accuracy of numerical solutions by 
LIE(2xPoiss) is very high and more or less invariable with respect to the parameter h in contrast to the 
case of b.v.p. (C). This can be explained by the detailed study of accuracy of the first order derivatives of 
the field variables which are almost indifferent to increasing the amount of nodal points only in the case of 
b.v.p. (A) and (B). The very accurate results are sensitive also to the choice of S0 or S1 technique. Fig. 4 
shows that qualitatively different results have been obtained by the LIE(biharm), where the accuracy of 
the numerical solution of a boundary value problem is affected also by the accuracy of approximations of 
the third order derivative , ( )rrrw r . It can be seen that the accuracies of the numerical solutions of b.v.p. 
(A) and (B) are divergent with respect to decreasing the parameter h , while the convergence of accuracy 
of the numerical solutions of the b.v.p. (C) is achieved. The detailed study shows that the accuracy of 
, ( )rrrw r is divergent with respect to increasing the amount of nodal points in the b.v.p. (A) and (B) in 

contrast to improving accuracy of , ( )rrrw r in the b.v.p. (C).  

Summarizing the study of the accuracy of numerical solutions by two formulations implemented with 
PIM-approximations of field variables, we conclude: 
(i)   the LIE(biharm) formulation gives unreliable results (convergence is achieved only in the b.v.p. (C) ) 
(ii) the LIE(2xPoiss) formulation gives stable and highly accurate numerical solutions of the b.v.p. (A) 

and (B); in the case of b.v.p. (C) the accuracy is good with excellent convergence rate 
(iii) the influence of S1-modification for evaluation of shape functions and their derivatives on accuracy is 

observable as long as the accuracy is very good. 
As regards the computational efficiency, the considered computational methods exhibit similar CPU-

times (see Fig. 5) when implemented by the MLS- and/or PIM-approximations. Only the LIE(biharm)-
MLS spends approximately 3 times shorted computational time than other methods. But this method is 
disqualified owing to unreliable accuracy.  
 

 
 Fig. 5 Comparison of computational times spent by various formulations implemented either by MLS or 

PIM-approximations 

In order to compare the accuracy of two powerful formulations, LIE(2xPoiss)-MLS and LIE(2xPoiss)-
PIM, we present following figures with using standard differentiation and S1-technique for evaluation of 
the shape functions and their derivatives. From Fig. 6, we conclude that much better accuracy is achieved 
when the formulations are implemented by PIM-approximations of field variables. 
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  Fig. 6 Comparison of accuracy and convergence of numerical solutions for three kinds of b.v.p. by LIE 

for decomposed formulations implemented by both PIM- and MLS-approximations 

7. Conclusions 

The decomposition of the thin plate bending problems governed by the biharmonic operator into two 
coupled problems governed by Poisson equations is developed and discussed. Two kinds of meshless 
approximations of field variables are employed in each formulation for numerical solution of boundary 
value problems. The developed decomposed formulations are not restricted to certain class of boundary 
value problems. For solution of the decomposed problem, both the strong and local weak formulations 
have been developed. The accuracy, convergence of accuracy and computational efficiency have been 
studied for two formulations combined with two meshless approximation of field variables in simple 
boundary value problems for circular plate. The discussed methods give reasonable numerical results 
when applied to decomposed problem, while the methods applied to original biharmonic problem fail. 
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