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Abstract: The paper analyzes an applicability of to date published indexes of non-proportionality in the 
case of a linear viscously damped numerical model of slender structure equipped with tuned mass 
damper (TMD). The installation of TMD into the structure not only reduces the level of undesired 
vibration, but it can also cause due to damping element of TMD a significant increase of damping non-
proportionality. The paper recommends the most suitable indexes for such a type of structure and points 
out to impropriety of the others. The point of view of is also focus on the validity of the existing criterions 
for neglecting of non-diagonal terms of a modal damping matrix. Only indexes and criterions based on 
the properties of the modal damping matrix were taking into account. The verifications of validity and 
recommendations for usage of particular indexes and criterions were performed using analysis of the 
dynamic response of an existing structure on harmonic excitation with and without neglecting of non-
diagonal terms of modal damping matrix. The applicability was also checked using analysis of particular 
complex eigen-modes. 
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1. Introduction 

Numerically efficient solution of a dynamic response of linear viscously damped numerical models of 
real structures using modal superposition method (MSM) see e.g. Hart & Wong (2000) motivates 
many authors to set boundaries, to which the inaccuracy of a solution with neglecting                         
of non-diagonal terms of a modal damping matrix is still acceptable. Simultaneously, they attempted 
to quantify an extent of non-proportionality of the damping by means of indexes of various types.  

The first group of indexes of non-proportionality is related to complex eigen-modes.                
Prater & Singh (1986) defined two indexes based on calculations of surfaces that form individual 
components of complex eigen-modes in the complex plane. Another two indexes suggested by these 
authors are functions of phase differences between individual complex components. Similarly in 
Bhaskar (1999), an index related to a modal area, which creates components of the complex eigen-
modes in the complex plane was proposed. The second index defined in this paper is based on             
a placement of components of complex eigen-modes in the complex plane and on their relative 
position to the position of components of eigen-modes of the same proportionally (classically) damped 
system. Three indexes based on relation of a real and a complex part of eigen-modes formulated       
Liu et al. (2000). Prells & Friswell (2000) proposed an index of non-proportionality equal to a norm of 
difference between orthonormal matrix generated from complex eigen-modes and a unit matrix. All 
above mentioned indexes require calculation of complex eigen-values and eigen-modes. Thus almost 
all the main numerical advantages of subsequent and prospective using of MSM are lost. More 
accurate results of the calculation of the response with negligible added computational time in 
comparison with MSM could be reached by complex mode superposition method                          
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see Hurty & Rubinstein (1964). This method utilizes the previously calculated complex eigen-modes 
to uncouple the system of differential equation of the numerical model. 

 More useful from the point of view of the computational time is the second group of indexes and 
criterions, which do not require the previous calculation of complex eigen-modes. The indexes are 
derived from a distribution of damping elements in the modal damping matrix, from a mutual 
frequency distances between the dominant frequency of a loading and individual eigen-frequencies 
and between eigen-frequencies themselves. In this paper short summary of till now published indexes 
and criterions of this type are presented. The focus is aimed especially at their applicability for 
numerical models of slender structures equipped with a tuned mass damper. On an example of real 
structure errors in response on harmonic excitation that are caused by neglecting of non-diagonal 
terms of the modal damping matrix are investigated together with indexes and criterions for selected 
damping ratios of absorber. On the basis of mutual relation of errors and criterions and of indexes and 
calculated complex eigen-modes the most appropriate ones are recommended. 

2. Theoretical background 

The discrete mathematical model of structure and its response can be described by very well-known 
system of differential equations of the second order: 

        t t t t  Mx Cx Kx p   (1) 

K, M and C are the stiffness, mass and damping matrices respectively; x(t) and p(t) are the 
displacement and force vectors. The key to analysis of the response of the governing system (1) using 
MSM is the transformation:  

    t tx Xq  (2) 

where q(t) is a vector of principal (modal) co-ordinates and X is the matrix, columns of which are real 
eigen-modes of the undamped system. The substitution (2) leads to set of uncoupled differential 
equations, if the modal damping matrix: 

  TC = X CX  (3) 

is diagonal i.e. it fulfills the relation: 

 1 1 KM C CM K  (4) 

In this case the mathematical expression of viscous damping is called proportional or classical. When 
the modal damping matrix is not diagonal the equations in principal coordinates are coupled. The 
simplest method to obtain uncoupled equations is to neglect the non-diagonal terms of this modal 
damping matrix. Nevertheless this method could lead to significant error in calculation of the response 
due to omitting of a presence of a mechanical interaction between eigen-modes. 

3. Indexes of non-proportionality and criterions for neglecting of non-diagonal terms of modal 
damping matrix 

In this chapter to date published indexes of non-proportionality and criterions which are based on 
properties of modal damping matrix are summarized. Short comments on their limitations and 
usability are attached to their mathematical formulations.  

The basic and the most general requirement and criterion for the neglecting of non-diagonal terms 
of modal damping matrix is a diagonal dominance of the modal damping matrix: 

 
1

ii ij
j
j i

C C pro i



  
 (5) 

The first relevant criterion for possible omitting of the mechanical interaction between eigen-
modes was suggested by Hasselman (1976). He expressed the condition for possible ignoring of non-
diagonal terms in a form: 
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where r is a damping ratio of the r-th eigen-mode given by: 

  / 2rrr rC   (7) 

and s is the s-th and r is the r-th eigen-frequency of the undamped system. However it is supposed, 
that a ratio of both examined eigen-frequencies is smaller than unity: 

 / 1s r    (8) 

Next assumption of a usability of the condition (6) is: 

  / 1rs rrC C   (9) 

Generally, the Hasselman’s criterion removes the main difference between non-classically and 
classically damped systems. It supposes also high mechanical interaction of eigen-modes of classically 
damped systems which lies close to each other. 

Similar to condition (6) Warburton & Soni (1977) defined a criterion based on a solution of the 
response on harmonic excitation in a form: 
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Coefficient  expresses the maximal value of desired and acceptable error in determination of the 
response. For problems in practice the authors recommended the value of  equal:  

 0,05   (11) 

This value should correspond to relative error up to 10 percent. In comparison to criterion (6)           
the condition (10) is taking into account a ratio of diagonal and non-diagonal terms of modal damping 
matrix.  

In the paper of Prater & Singh (1986) three indexes non-proportionality are published. For the 
purposes of their mathematical expressions authors divided the modal damping matrix into a sum of 
diagonal matrix Cd and matrix  which has zero diagonal terms: 

 d C C Γ  (12) 

The first generalized index is defined as the quotient between the sum of non-diagonal terms of the 
transformed damping matrix and the sum of all its terms: 

 1
1 1 1 1

/
n n n n

ij ij
i j i j

C
   

     (13) 

Index (13) indicated the degree of non-proportionality of the damping of the system as a whole.         
In problems where the response is investigated only in given frequency range or when only few        
eigen-modes are coupled due to the damping, it is recommended to use the modified index (13)           
in a form: 

 1
1 1

/
n n

i ij ij
j j

C
 

     (14) 

which is valid for i-th eigen-mode. The second index proposed by Prater & Singh (1986) is given by 
ratio of the determinants of matrices  and Cd:  

 2 
Γ

C
 (15) 
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Since the determinant is scalar, no index of particular eigen-mode can be formulated. The third 
proposed index is based on comparison of the response of a system with full modal damping matrix 
and the same system with modal damping matrix with diagonal terms only. The response of both 
systems on harmonic load is given by solution of following system of differential equations: 

  2 i    I C Λ q f  (16) 

The vector of amplitudes of harmonic forces is assumed as a unity vector f: 

  T= 1,1,…,1f  (17) 

The loading frequencies  are chosen equal to the damped eigen-frequencies with damping ratios 
given by equation (7) in which one can expect the highest response: 

 21di i i       (18) 

The proposed response based index of i-th eigen-mode is then given by ratio of difference between 

amplitude of steady state response of approximate  iq and full modal system qi and amplitude qi: 
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To quantify the amplitude qi the whole matrix system (16) must be solved. In the case of system with 

neglected non-diagonal terms of modal damping matrix for amplitude  iq  it holds: 
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It is also possible to define the overall index as an arithmetic mean: 
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Authors recommended omitting of non-diagonal terms of modal damping matrix if following 
conditions are fulfilled:  

 1 2 31 1 1      (22) 

From the point of view of numerical difficulty the index 1 is the most appropriate. Index 2 was 
determined by authors as the less useful. The third index 3 could serve as indicator of error rate of the 
response of variously modified damped systems. 

Tong et al. (1994) defined an index for quantifying the damping non-proportionality as:  

    max min max min/I        (23) 

max and min are the maximum and minimum eigen-values of matrix H: 

  1
d


H C C  (24) 

Coefficient I is zero for classically damped system. With increasing of the non-proportionality of the 
damping the coefficient approximates the unity. Authors defined an upper bound of the relative error 
of the response caused by neglecting of non-diagonal terms in the case of harmonic load as follows: 
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The degree of non-proportionality of the damping based on relations of the non-diagonal and 
diagonal terms of the modal matrix was presented by Venancio-Filho et.al. (2001): 
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   (26) 

However, the limiting value of coefficient (26) for approximative solution by neglecting of non-
diagonal terms of the modal damping matrix was not given. 

Bhaskar (1995) proposed an index which originates from the solution of the response of the 
system on harmonic excitation. For i-th eigen-mode it has a form: 
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For diagonally dominant modal matrix the coefficient i should fulfill a condition: 

 0 1i   (28) 

Coefficients (27) include not only the terms of modal damping matrix but also a frequency of the 
loading and a relation of the loading frequency to the eigen-frequencies. If one is interested only in 
upper bound of non-proportionality of the damping, the coefficient (27) could be simplified in a form: 

 1

n

ij
j

i
iiC

 




  (29) 

Gawronski & Sawicki (1997) derived an upper bound of the relative error of the response in modal 
coordinates for the case of neglecting of non-diagonal terms of modal damping matrix. The condition 
of the error of i-th modal coordinate is given by:  
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where coefficient i is given by a sum of terms of the i-th row of the non-diagonal matrix : 

 i ik
k

    (31) 

Coefficient i is the maximum from a series: 

  ,maxi k i i k   (32) 

Coefficient i,k is scalar, which is given by ratio of modal amplitudes of i-th and k-th eigen-mode in the 
case of harmonic load with frequency k: 
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The prerequisite of using the condition (30) is a small ratio of modal loadings: 

 1i

k

f

f
  (34) 

The requirement (34) is very conservative and for many system impossible to fulfill.  
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4. Applicability of indexes and criterions in case of real structure equipped with TMD 

4.1. Specification of structure  

The indexes and criterions from previous chapter were calculated and analyzed for the case of a linear 
discrete numerical model of existing TV tower equipped with TMD.  Absorber in a form of pendulum 
was installed into a laminate extension of a top of the tower, due to possible excessive vibrations 
caused by a wind load. The vortex-shedding effect on the cylindrical extension without absorber could 
cause danger stresses in laminate from the point of view of material fatigue and life-time of the 
structure. TMD was designed and tuned to be the most effective in vibrations in the second eigen-
mode i.e. eigen-frequency of the tower. The weight of absorber is 1 tone, which is 1/10 of a 
generalized (effective) mass of the second eigen-mode. TMD has usually higher damping properties 
than the part of the structure, where it is installed, and thus, it could represent an significant origin of 
non-proportionality of the damping. 

4.2. Relative errors of response of numerical model on harmonic excitation due to approximate 
solution  

The discrete numerical model of structure was created in CALFEM, which is Matlab toolbox for 
computing by the finite elements method. Basic model without TMD had 15 nodes, each with 3 
degrees of freedom. The absorber was subsequently modeled as a concentrated mass connected to the 
top of the tower with Kelvin-Voigt damping term and had one degree of freedom in horizontal 
direction. Adding this degree of freedom into the model resulted in increasing of total number of 
eigen-modes by one. This eigen-mode was associated due to tuning of absorber to the second eigen-
mode of the basic system. It means, that model with absorber had two eigen-modes, which are similar 
in shape. However, they differ especially in a phase between absorber and the top of the tower see 
Figure 1. 

 

 

f1 = 0,378 Hz 

(f1P = 0,394 Hz) 

f2=0,679 Hz 
 

f3=0,931 Hz f4=1,275Hz 

(f3P = 1,213 Hz) 

f5=2,120Hz 

(f4P = 2,109 Hz) 

 

 (f2P = 0,806 Hz) 
 

Fig. 1: The first five eigen-modes and eigen-frequencies of the structure with absorber                      
(in parentheses the corresponding eigen-frequencies of the basic system without absorber) 

 

At first, the steady state response of the structure with absorber on a harmonic force located at the 
top of the tower was calculated. The response were analyzed for an interval of the frequency of the 
loading force (f = 0 ÷ 3 Hz), where the first four eigen-modes of the basic system lie. Damping matrix 
of the basic system was proportional to the combination of the mass and stiffness matrix. 
Multiplicative coefficients related to these stiffness and mass matrices were calculated from the given 
structural damping ratio (ζ= 0,005) for the first two eigen-frequencies of the basic system. Factor of 
the damping non-proportionality of the system has been examined as follows: a set of various damping 
ratio of the TMD (dashpot absorber) was used (ζTMD = 0 ÷ 0,8), while constant structural damping was 
kept. First seven eigen-modes were used for reduction of the matrix system (1) using transformation 
(2) and two different solutions of response of this reduced model were assumed. The first one 
concerned the direct solution of the reduced system with full modal damping matrix. The second one 
took into account only the diagonal terms of the modal damping matrix. Relative errors of amplitudes 
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With increasing of the damping of the absorber the errors also increase. This fact isn’t generally valid 
for every numerical model of the structure with absorber. It depends as well as on a chosen model of 
classical viscous damping of the basic structure and numerical model of the absorber as on the 
difference of damping ratios of the eigen-modes of the structure and ζTMD. The ζTMD of a real absorber 
installed into the existing tower was from practical point of view set equal 20%. This value of ζTMD is 
optimal for reduction of vibrations with frequencies close to the second eigen-frequency of the basic 
structure. However, this value of ζTMD is 40 times higher than the damping ratio of this second eigen-
mode. The relative error of the amplitude of the response of the top of the tower is in this case 
significant and is equal almost 40% for the second peak see Table 1 and Figure 2. Similarly, the 
maximal and appreciable error of amplitude of the absorber is equal 20%. It follows, that the non-
proportionality of the damping is in this practical case substantial. Amplitudes of approximate solution 
are for almost every studied case lower than for exact solution. This fact could be explained by the 
mechanical interaction between eigen-modes for non-classically damped system. It could be also 
interpreted by different modal damping of eigen-modes for both solutions see Table 2. The final 
results of the response are strongly affected by a number of eigen-modes of undamped system being 
taken into the consideration. The controlling calculation of the response of the full system (1) on the 
same excitation showed, that using a set of first seven eigen-modes resulted to acceptable maximal 
absolute error less than 0,1%. 

The influence of non-proportionality of the damping on the individual eigen-modes could be also 
illustrated by different phases of their components. The components of the first six complex eigen-
modes, which correspond to displacements of the tower, are for the practical value of ζTMD depicted in 
the complex plane on Figure 3. The most influenced are the second, the third and the fourth complex 
eigen-mode. Their components have different phases i.e. they don’t lie in the complex plane on one 
line. On the other hand, the fifth, the sixth and especially the first eigen-mode almost correspond to the 
real undamped eigen-modes, which are characterized by same phase of all components.  

 
 

Tab. 2: Damping ratios of eigen-values of approximate (APP) and real () numerical model               
for various values of TMD 

1st eigen-value  2nd eigen-value 

TMD [/] 0 0,2 0,5 0,8 TMD [/] 0 0,2 0,5 0,8 

 [/] 0,0047 0,0067 0,0087 0,0093  [/] 0,0027 0,0597 0,0585 0,0381

APP [/] 0,0047 0,0068 0,0100 0,0132 APP [/] 0,0027 0,0651 0,1586 0,2522

3rd eigen-value 4th eigen-value 

TMD [/] 0 0,2 0,5 0,8 TMD [/] 0 0,2 0,5 0,8 

 [/] 0,0033 0,1105 0,4505 0,8485  [/] 0,0054 0,0551 0,0574 0,0385

APP [/] 0,0033 0,0986 0,2415 0,3844 APP [/] 0,0054 0,0594 0,1404 0,2215

5th eigen-value 6th eigen-value 

TMD [/] 0 0,2 0,5 0,8 TMD [/] 0 0,2 0,5 0,8 

 [/] 0,0093 0,0182 0,0266 0,0282  [/] 0,0156 0,0178 0,0208 0,0230

APP [/] 0,0093 0,0187 0,0327 0,0467 APP [/] 0,0156 0,0179 0,0213 0,0247
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 Fig. 3: Components of first six complex eigen-modes of structure in complex plane (TMD = 0,2)  

4.3. Calculation of indexes of non-proportionality and criterions as functions of damping ratio   
of the absorber 

For the investigated numerical model and for a set of ζTMD the previously defined indexes and 
criterions were calculated. In this chapter their values and recommendations of their applicability in 
case of structures with absorber are given. The guidelines are based on comparison of the indexes and 
criterions with complex character of the eigen-modes and relative errors given in Table 1. The focus 
was aimed especially to errors of amplitude of the top of the tower. 

The most general indication of non-proportionality of the damping is the non-fulfillment of the 
diagonal dominance of the modal damping matrix. In Table 3 the ratio of absolute value of diagonal 
term and the sum of absolute values of non-diagonal terms for each row of modal damping matrix as a 
function of TMD is evaluated. The cases for which the requirement of dominance is fulfilled are 
printed in bold. From the table it follows, that the modal damping matrix isn’t diagonally dominant for 
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all analyzed values of ζTMD. The requirement of dominance is fulfilled only for zero ζTMD and for 
eigen-modes, which aren’t associated with the second eigen-mode of the basic system. The decrease of 
ratios with increase of ζTMD corresponds with increase of the extent of the non-proportionality of the 
damping.. Nevertheless, the diagonal dominance of the modal matrix could serve only as additional 
not the decisive criterion for neglecting the non-diagonal terms. It follows from the fact, that although 
relative errors for zero ζTMD are small, the modal damping matrix isn’t diagonally dominant.  

 
Tab. 3: Ratio of absolute value of diagonal term and the sum of absolute values of non-diagonal terms 

for each row of modal damping matrix as function of TMD                                  

TMD [/] 
Eigen-mode (row) n. 

1 2 3 4 5 6 

0 1,453 0,422 0,583 1,539 7,917 34,642 

0,2 0,084 0,235 0,373 0,334 0,286 0,691 

0,5 0,049 0,226 0,361 0,312 0,198 0,326 

0,8 0,040 0,223 0,358 0,307 0,176 0,236 

 

The values of the left side of the condition (6) suggested by Hasselman (1976) is graphically 
presented for particular eigen-modes and for various ζTMD on Figure 4.  
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Fig. 4: Graphical expression of Hasselman’s criterion for neglecting of mechanical interaction          
of eigen-modes for various TMD (…TMD =0; o…TMD =0,2; �…TMD =0,5; …TMD =0,8) 

 

The significant mechanical interaction between the second and third, the third and fourth as well as 
between the fourth and the fifth eigen-mode was determined. On the other hand, small interaction 
between the first eigen-mode and the others were found out. However these results come from 
frequency proximity of these eigen-modes rather than from a distribution of damping in the system. It 
could be demonstrated on the example of the mechanical interaction of the sixth and the seventh 
eigen-mode. Relatively high value of interaction (0,2) didn’t change significantly with increasing of 
the ζTMD and also didn’t correspond to negligible error in calculation of the response using 
approximate solution. It should be also noted, that condition (9), which is required for using 
Hasselman’s criterion and which is related to ratios of diagonal a non-diagonal terms of modal 
damping matrix, is fulfilled only for zero ζTMD. However, the main disadvantage and the reason of 
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unusability of Hasselman’s criterion is the fact that it finds out the mechanical interaction even 
between eigen-modes of classically damped models. 

Criterion suggested by Wartburton & Soni (1977) for neglecting of non-diagonal terms of modal 
damping matrix was expressed by means of boundary value b of the coefficient  see Table 4 and 
Figure 5. For smaller values of  than b the condition (10) is fulfilled, for higher values it is not.        
In comparison to Hasselman’s criterion the proposed criterion could identify the classically damped 
system due to ratio of diagonal and non-diagonal terms of the modal damping matrix. In this case the 
coefficient b is theoretically zero. The authors proposed for problem in practice value of b equal 5%. 
This value should correspond to maximal achievable error of response equal 10%. For the first eigen-
mode the assumption of a small mechanical interaction based on analysis of the relative errors and 
complex eigen-modes was confirmed with exception of the highest ζTMD. For the lowest ζTMD a small 
non-proportionality of whole system was also confirmed. For higher values of ζTMD especially the 
practical one the coefficient b for particular eigen-modes shows relatively good agreement with errors 
of the top of the tower given in Table 1. On Figure 5a there is depicted the coefficient b as a function 
of ζTMD for the first six eigen-modes. It shows almost the linear dependency of ζTMD on b i.e. increase 
of the b with increase of ζTMD. The decreasing of the value of b with increasing of ζTMD occurs only 
for values of ζTMD lower than a specific ζTMD for which the damping matrix is the best approximation 
of the classically damped one see Figure 5b. This specific value of ζTMD is in our case close to 
damping ratio of the first and second eigen-mode of structure without absorber.  

 
Tab. 4: Boundary value b of parameter  of criterion of particular eigen-modes                      

suggested by Wartburton & Soni (1977) for various TMD 

TMD [/] 
Eigen-mode n. 

1 2 3 4 5 6 

0 0,0010 0,0052 0,0071 0,0051 0,0009 0,0003 

0,2 0,0129 0,1993 0,2734 0,2586 0,0536 0,0157 

0,5 0,0336 0,5059 0,6942 0,6542 0,1354 0,0396 

0,8 0,0543 0,8126 1,1151 1,0497 0,2172 0,0635 
 

ζTMD [/] ζTMD [/] 

 b
 [

/]
 

 b
 [

/]
 

a) b) 

Fig. 5: Boundary values b of parameter  of criterion of particular eigen-modes                      
suggested by Wartburton & Soni (1977) as function of TMD  

 

The summation based indexes 1i of particular eigen-modes, which was proposed by                 
Prater & Singh (1986), are depicted as a function of TMD on Figure 6. All of these indexes are 
increasing with increasing of TMD. Only for lower values of ζTMD than specific value of ζTMD, which 
was defined in previous paragraph, the indexes have decreasing trend see Figure 6b. The values of 
indexes 1i for chosen TMD are also quantified in Table 5. From the Table 5 and from the Figure 6b 
follow, that for zero TMD the first four eigen-modes are highly coupled. It doesn‘t correspond with 
errors of solution of the response obtained from the analysis of numerical model and also with a 
character of complex eigen-modes. The behaviour of indexes also shows, that for practical and higher 
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values of TMD the most influenced eigen-mode by damping term of absorber is the first one. It is in 
contrast to an expected and confirmed presumption, that the most influenced eigen-modes are the 
second, the third and the fourth one. 

ζTMD [/] ζTMD [/] 

 1
i [

/]
 

 1
i [

/]
 

a) b) 

Fig. 6: Indexes 1i of particular eigen-modes as function of TMD (Prater & Singh (1986)) 
 

Tab. 5: Indexes of non-proportionality of damping 1i for various values of TMD 

TMD [/] 
Eigen-mode n. 

1 2 3 4 5 6 

0 0,408 0,703 0,632 0,394 0,112 0,028 

0,2 0,922 0,810 0,729 0,750 0,778 0,592 

0,5 0,954 0,816 0,735 0,762 0,835 0,754 

0,8 0,962 0,817 0,737 0,765 0,850 0,809 
 

Another calculated response based indexes 3i of particular eigen-modes see Figure 7 and Table 6 
express very well the trend of behaviour of obtained errors of peaks of the response in frequencies 
near the corresponding eigen-frequencies. However, the calculation of indexes requires the solution of 
the response of the whole system with full modal damping matrix. And thus no advantage of 
calculation of indexes in comparison with the solution of the real and full problem is gained.  

 ζTMD [/] 

 3
i [

/]
 

Fig. 7: Indexes 3i of particular eigen-modes as function of TMD (Prater & Singh (1986)) 

 
Tab. 6: Indexes of non-proportionality of damping 3i for various values of TMD 

TMD [/] 
Eigen-mode n. 

1 2 3 4 5 6 

0 3,8e-5 9,3e-4 1,1e-4 6,3e-5 1e-5 7,8e-6 

0,2 0,017 0,177 0,117 0,033 0,005 0,002 

0,5 0,113 0,498 0,401 0,177 0,071 0,003 

0,8 0,240 0,659 0,577 0,332 0,172 0,025 
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The values of the generalized determinant based index 2 and generalized indexes 1 and 3 of the 
investigated numerical model suggested by Prater & Singh (1986) are for chosen ζTMD given in Table 
7. Index 2 indicates the unrealistically high value of non-proportionality of the damping. Even for the 
realistic value of ζTMD equal 0,2 it exceeds the border of total non-proportionality of the system given 
by one. The other generalized indexes 1 and 3 are strongly affected by the number of eigen-modes 
taking into account. Assuming in the solution of indexes one additional eigen-mode, which is 
minimally influenced by absorber i.e. is almost classical, results in decreasing of both generalize 
indexes 1 and 3. 

 
Tab. 7: Generalized indexes of non-proportionality of damping 1-3 for various values of TMD 

Index 
TMD [/] 

0 0,2 0,5 0,8 

1 0,089 0,693 0,762 0,781

2 2,6e-8 1,773 466,7 8022 

3 1,7e-4 0,050 0,181 0,287
 

The values of index I defined by Tong et al. (1994) show very high non-proportionality of the 
system almost in the whole interval of investigated values of ζTMD see Figure 8 and Table 8. Only in a 
narrow interval of ζTMD in the neighborhood of specific ζTMD the index is minimized. This specific 
value of ζTMD corresponds as it was previously defined to the best approximation of the damping 
matrix to its classically damped form. The values of the index don’t correspond to the results of 
analysis of the error. For all chosen ζTMD the value of index are almost one, which stands for the total 
non-proportionality of the damping. However, the errors caused by approximate solution are 
especially for zero ζTMD less significant than it could be expected from the value of index. This 
conclusion of unusability of this index is also supported by the excessive values of upper bounds of 
the relative errors given by (25) for all ζTMD see Table 8. 

 

 ζTMD [/] 

I 
[/

] 

Fig. 8: Index of non-proportionality of damping I as function of TMD (Tong et al. (1994)) 

 
Tab. 8: Index of non-proportionality of damping I and upper bound of error of response                     

for various values of TMD 

TMD [/] 0 0,2 0,5 0,8 

I 0,995 0,97 0,990 0,994

E 9,56 8,423 8,705 9,466
 

The prerequisite of the diagonal dominance of the modal damping matrix for a quantification of 
the non-proportionality of the individual eigen-mode using indexes defined by Bhaskar (1995) has 
been confirmed. The value of indexes is close to one which represents the absolute non-proportionality 
even for the ζTMD= 0,2 see Figure 9. For higher values of ζTMD the indexes are higher than one. On the 
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figure the indexes of each eigen-mode were calculated for driving frequencies of the loading equal to 
the first six eigen-frequencies of the structure with absorber. Only indexes of eigen-modes for which 
driving frequencies are not equal to their corresponding eigen-frequencies are depicted. The indexes of 
particular eigen-modes and corresponding eigen-frequencies are summarized in Table 9.  

 Eigen-mode n. [/] 

Eigen-frequency 
n. [/] 

 i
 [

/]
 

Fig. 9: Indexes of non-proportionality i of particular eigen-modes for driving frequencies of loading 
equal to eigen-frequencies of the system with absorber for various TMD (Bhaskar (1995))                                     

(…TMD =0; o…TMD =0,2; �…TMD =0,5; …TMD =0,8) 
 
Tab. 9: Maximal values of indexes of non-proportionality i of particular eigen-modes and their 

corresponding eigen-frequencies for various values of TMD (Bhaskar(1995)) 

TMD [/] 
Eigen-frequency and eigen-mode n. 

1 2 3 4 5 6 

0 0,688 2,370 1,715 0,650 0,126 0,029 

0,2 11,843 4,262 2,683 2,992 3,501 1,448 

0,5 20,609 4,433 2,773 3,202 5,052 3,068 

0,8 25,123 4,477 2,796 3,258 5,671 4,239 
 

The upper bounds of the relative errors in modal coordinates derived by                         
Gawronski & Sawicki (1997) are given for investigated model in Table 10.  

 
Tab. 10: Relative errors of modal displacements due to neglecting of non-diagonal terms of modal 

damping matrix for various values of TMD (Gawronski & Sawicki (1997)) 

TMD [/] 
Eigen-mode n. 

1 2 3 4 5 6 

0 0,029 0,082 0,055 0,045 0,008 0,002 

0,2 3,713 1,923 0,345 1,386 0,263 0,101 

0,5 15,829 4,485 0,727 3,382 0,928 0,244 

0,8 30,715 6,327 0,935 4,915 1,657 0,378 

Calculated upper bounds of errors are for ζTMD equal and higher than 20% very high. The highest 
bound was obtained for the modal displacement which corresponds to the first eigen-mode of the 
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system. Although the influence of the damping term of the absorber should be more significant in case 
of the second, the third and the fourth eigen-mode. We can’t directly compare the errors of generalized 
displacements and errors of modal displacements. However we can‘t expect for these excessive upper 
bounds such a real level of relative errors of the response in generalized co-ordinates. 

The coupling indexes r of individual eigen-modes defined by Venancio-Filho et al. (2001) are 
given in Table 11. Under assumption, that zero stands for minimum and one for maximum non-
proportionality, it follows that in all investigated cases index is very high. This fact doesn’t correspond 
with calculated character of complex modes and relative errors. 

 
Tab. 11: Indexes of non-proportionality of damping of particular eigen-modes for various values of 

TMD (Venancio-Filho et al. (2001)) 

TMD [/] 
Eigen-mode n. 

1 2 3 4 5 6 

0 0,050 0,430 0,430 0,108  0,009 0,001 

0,2 0,277 0,880 0,880 0,846 0,467 0,120 

0,5 0,508 0,950 0,950 0,934 0,695 0,261 

0,8 0,627 0,968 0,968 0,958 0,787 0,364 

5. Conclusions 

The article deals with an applicability of till now published indexes of non-proportionality of the 
damping in the case of slender structure (TV tower) equipped with absorber which is subjected to 
the harmonic excitation. The focus is also aimed at criterions for neglecting of non-diagonal terms 
of the modal damping matrix of its numerical model. These terms express the coupling of modal 
coordinates i.e. the mechanical interactions of individual eigen-modes. The applicability is 
assessed using comparison of indexes and criterions with character of complex eigen-modes and 
with relative errors of the response that are caused by neglecting of non-diagonal terms for 
selected values of damping ratios of absorber. From the practical point of view the errors 
corresponding to the dominant peaks of response curve of the top of the tower were taking into 
account. None of investigated indexes and criterions did fully correspond to the obtained 
solutions. The summation based index suggested by Prater & Singh (1986), indexes proposed by 
Bhaskar (1995) and Venancio-Filho et al. (2001) indicated very high values of non-proportionality 
particularly for the first four eigen-modes for all selected damping ratios of absorber. Even for zero 
damping ratio for which the calculated errors of the response were negligible and also for the first 
eigen-mode, which is almost identical with real eigen-mode of the undamped system. Also the 
generalized index suggested by Tong et al. (1994), determinant based index proposed by               
Prater & Singh (1986) indicated almost total non-proportionality of the system for all investigated 
cases. The analysis confirmed that criterion suggested by Hasselman (1976) couldn’t be used 
because it supposes the mechanical interaction between individual eigen-modes even for 
classically damped structures. The relatively good agreement between calculated relative errors 
and proposed criterions was obtained for criterion proposed by Warburton & Soni (1977). The 
boundary values of its parameter  for which the criterion is still fulfilled could also serve as an 
approximate index of non-proportionality of particular eigen-modes. Analysis of the response also 
highlights the necessity of prerequisite of non-proportional damping, when passive damping 
equipment is installed into the structure and when the detailed behavior is investigated.  
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