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APPLICABILITY OF EXISTING INDEXES OF NON-
PROPORTIONALITY OF DAMPING IN CASE OF THEORETICAL
MODEL OF SLENDER STRUCTURE WITH INSTALLED TMD

S. Hradov', S. Pospisil ", J. Naprstek

Abstract: The paper analyzes an applicability of to date published indexes of non-proportionality in the
case of a linear viscously damped numerical model of slender structure equipped with tuned mass
damper (TMD). The installation of TMD into the structure not only reduces the level of undesired
vibration, but it can also cause due to damping element of TMD a significant increase of damping non-
proportionality. The paper recommends the most suitable indexes for such a type of structure and points
out to impropriety of the others. The point of view of is also focus on the validity of the existing criterions
for neglecting of non-diagonal terms of a modal damping matrix. Only indexes and criterions based on
the properties of the modal damping matrix were taking into account. The verifications of validity and
recommendations for usage of particular indexes and criterions were performed using analysis of the
dynamic response of an existing structure on harmonic excitation with and without neglecting of non-
diagonal terms of modal damping matrix. The applicability was also checked using analysis of particular
complex eigen-modes.
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1. Introduction

Numerically efficient solution of a dynamic response of linear viscously damped numerical models of
real structures using modal superposition method (MSM) see e.g. Hart & Wong (2000) motivates
many authors to set boundaries, to which the inaccuracy of a solution with neglecting
of non-diagonal terms of a modal damping matrix is still acceptable. Simultaneously, they attempted
to quantify an extent of non-proportionality of the damping by means of indexes of various types.

The first group of indexes of non-proportionality is related to complex eigen-modes.
Prater & Singh (1986) defined two indexes based on calculations of surfaces that form individual
components of complex eigen-modes in the complex plane. Another two indexes suggested by these
authors are functions of phase differences between individual complex components. Similarly in
Bhaskar (1999), an index related to a modal area, which creates components of the complex eigen-
modes in the complex plane was proposed. The second index defined in this paper is based on
a placement of components of complex eigen-modes in the complex plane and on their relative
position to the position of components of eigen-modes of the same proportionally (classically) damped
system. Three indexes based on relation of a real and a complex part of eigen-modes formulated
Liu et al. (2000). Prells & Friswell (2000) proposed an index of non-proportionality equal to a norm of
difference between orthonormal matrix generated from complex eigen-modes and a unit matrix. All
above mentioned indexes require calculation of complex eigen-values and eigen-modes. Thus almost
all the main numerical advantages of subsequent and prospective using of MSM are lost. More
accurate results of the calculation of the response with negligible added computational time in
comparison with MSM could be reached by complex mode superposition method
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see Hurty & Rubinstein (1964). This method utilizes the previously calculated complex eigen-modes
to uncouple the system of differential equation of the numerical model.

More useful from the point of view of the computational time is the second group of indexes and
criterions, which do not require the previous calculation of complex eigen-modes. The indexes are
derived from a distribution of damping elements in the modal damping matrix, from a mutual
frequency distances between the dominant frequency of a loading and individual eigen-frequencies
and between eigen-frequencies themselves. In this paper short summary of till now published indexes
and criterions of this type are presented. The focus is aimed especially at their applicability for
numerical models of slender structures equipped with a tuned mass damper. On an example of real
structure errors in response on harmonic excitation that are caused by neglecting of non-diagonal
terms of the modal damping matrix are investigated together with indexes and criterions for selected
damping ratios of absorber. On the basis of mutual relation of errors and criterions and of indexes and
calculated complex eigen-modes the most appropriate ones are recommended.

2. Theoretical background

The discrete mathematical model of structure and its response can be described by very well-known
system of differential equations of the second order:

M (1)+Cx(t)+Kx()=p(¢) (1)

K, M and C are the stiffness, mass and damping matrices respectively; x(z) and p(?) are the
displacement and force vectors. The key to analysis of the response of the governing system (1) using
MSM is the transformation:

x(1)=Xq(¢) 2)

where q(?) is a vector of principal (modal) co-ordinates and X is the matrix, columns of which are real
eigen-modes of the undamped system. The substitution (2) leads to set of uncoupled differential
equations, if the modal damping matrix:

c=Xx"cx 3)
is diagonal i.e. it fulfills the relation:
KM 'C=CM 'K (4)

In this case the mathematical expression of viscous damping is called proportional or classical. When
the modal damping matrix is not diagonal the equations in principal coordinates are coupled. The
simplest method to obtain uncoupled equations is to neglect the non-diagonal terms of this modal
damping matrix. Nevertheless this method could lead to significant error in calculation of the response
due to omitting of a presence of a mechanical interaction between eigen-modes.

3. Indexes of non-proportionality and criterions for neglecting of non-diagonal terms of modal
damping matrix

In this chapter to date published indexes of non-proportionality and criterions which are based on
properties of modal damping matrix are summarized. Short comments on their limitations and
usability are attached to their mathematical formulations.

The basic and the most general requirement and criterion for the neglecting of non-diagonal terms
of modal damping matrix is a diagonal dominance of the modal damping matrix:

&l> 3¢,
j=1
J#

roVi
P (5)

The first relevant criterion for possible omitting of the mechanical interaction between eigen-
modes was suggested by Hasselman (1976). He expressed the condition for possible ignoring of non-
diagonal terms in a form:
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26,
(a)s/a)r)z—l < ©

where ¢, is a damping ratio of the r-th eigen-mode given by:
é’i’ = 67'}» /260,,. (7)

and a; is the s-th and @, is the r-th eigen-frequency of the undamped system. However it is supposed,
that a ratio of both examined eigen-frequencies is smaller than unity:

o,/ @, >1 (8)
Next assumption of a usability of the condition (6) is:
Crs/Crr <1 )

Generally, the Hasselman’s criterion removes the main difference between non-classically and
classically damped systems. It supposes also high mechanical interaction of eigen-modes of classically
damped systems which lies close to each other.

Similar to condition (6) Warburton & Soni (1977) defined a criterion based on a solution of the
response on harmonic excitation in a form:
~ 2
G | &5
2G5\ @}

Coefficient ¢ expresses the maximal value of desired and acceptable error in determination of the
response. For problems in practice the authors recommended the value of £ equal:

e=0,05 (11)

(10)

(<&

min s

This value should correspond to relative error up to 10 percent. In comparison to criterion (6)
the condition (10) is taking into account a ratio of diagonal and non-diagonal terms of modal damping
matrix.

In the paper of Prater & Singh (1986) three indexes non-proportionality are published. For the
purposes of their mathematical expressions authors divided the modal damping matrix into a sum of
diagonal matrix C4 and matrix I" which has zero diagonal terms:

C=Cy+T (12)

The first generalized index is defined as the quotient between the sum of non-diagonal terms of the
transformed damping matrix and the sum of all its terms:

(13)

Index (13) indicated the degree of non-proportionality of the damping of the system as a whole.
In problems where the response is investigated only in given frequency range or when only few
eigen-modes are coupled due to the damping, it is recommended to use the modified index (13)
in a form:

C.

)

n n
& =2 0|12,

J=1 J=1

(14)

which is valid for i-th eigen-mode. The second index proposed by Prater & Singh (1986) is given by

ratio of the determinants of matrices I" and Cg:
]

52 =T=7 (15)
|
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Since the determinant is scalar, no index of particular eigen-mode can be formulated. The third
proposed index is based on comparison of the response of a system with full modal damping matrix
and the same system with modal damping matrix with diagonal terms only. The response of both
systems on harmonic load is given by solution of following system of differential equations:

(—a)21+ia)(3+A)q:f (16)
The vector of amplitudes of harmonic forces is assumed as a unity vector f:
f=[1,1,...,1]" (17)

The loading frequencies ® are chosen equal to the damped eigen-frequencies with damping ratios
given by equation (7) in which one can expect the highest response:

0=, =\1-¢} o (18)

The proposed response based index of i-th eigen-mode is then given by ratio of difference between

amplitude of steady state response of approximate & ; and full modal system ¢, and amplitude g;:

9,
3 —
|q4

(19)

To quantify the amplitude g; the whole matrix system (16) must be solved. In the case of system with

neglected non-diagonal terms of modal damping matrix for amplitude &i it holds:

~ 1
q; = 2 2 . (20)
-wy” + o] +1w,C

il

It is also possible to define the overall index as an arithmetic mean:
1 n
i=1

Authors recommended omitting of non-diagonal terms of modal damping matrix if following
conditions are fulfilled:

o xl1 0, <1 0y x1 (22)

From the point of view of numerical difficulty the index ¢; is the most appropriate. Index &, was
determined by authors as the less useful. The third index ¢; could serve as indicator of error rate of the
response of variously modified damped systems.

Tong et al. (1994) defined an index for quantifying the damping non-proportionality as:
I =(Cmax = min )/ (Cmax + Timin) (23)
Opmax and 0y,;, are the maximum and minimum eigen-values of matrix H:
H=C,C (24)

Coefficient / is zero for classically damped system. With increasing of the non-proportionality of the
damping the coefficient approximates the unity. Authors defined an upper bound of the relative error
of the response caused by neglecting of non-diagonal terms in the case of harmonic load as follows:

max(é :)

E(w)< 1(6:){—3')1/2 (25)

min(C;,)
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The degree of non-proportionality of the damping based on relations of the non-diagonal and
diagonal terms of the modal matrix was presented by Venancio-Filho et.al. (2001):
~2
CVS

2, = max (26)

V}"CSS

However, the limiting value of coefficient (26) for approximative solution by neglecting of non-
diagonal terms of the modal damping matrix was not given.

Bhaskar (1995) proposed an index which originates from the solution of the response of the
system on harmonic excitation. For i-th eigen-mode it has a form:

n
2\
=1

K= 5 12 27)
(170?)(0f -a?) +3)

For diagonally dominant modal matrix the coefficient x; should fulfill a condition:
0<k; <l (28)

Coefficients (27) include not only the terms of modal damping matrix but also a frequency of the

loading and a relation of the loading frequency to the eigen-frequencies. If one is interested only in

upper bound of non-proportionality of the damping, the coefficient (27) could be simplified in a form:
r.

n
2Ir,
K< (29)

123

Gawronski & Sawicki (1997) derived an upper bound of the relative error of the response in modal
coordinates for the case of neglecting of non-diagonal terms of modal damping matrix. The condition
of the error of i-th modal coordinate is given by:

N

“I(a’i)_q(a’i) < Vi%i (30)
‘Q(wi )‘ 20,
where coefficient o; is given by a sum of terms of the i-th row of the non-diagonal matrix I'":
o, =Y |ry] 31
k
Coefficient v; is the maximum from a series:
v =maxe (vVig) (32)

Coefficient v; is scalar, which is given by ratio of modal amplitudes of i-th and &-th eigen-mode in the
case of harmonic load with frequency wy:

|fl|/|fk| (33)

Vik = 172

&1 ((a)i Jor) +((0) @)’ —1)2 /45}j

The prerequisite of using the condition (30) is a small ratio of modal loadings:

m <1 (34)

| /il

The requirement (34) is very conservative and for many system impossible to fulfill.
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4. Applicability of indexes and criterions in case of real structure equipped with TMD

4.1. Specification of structure

The indexes and criterions from previous chapter were calculated and analyzed for the case of a linear
discrete numerical model of existing TV tower equipped with TMD. Absorber in a form of pendulum
was installed into a laminate extension of a top of the tower, due to possible excessive vibrations
caused by a wind load. The vortex-shedding effect on the cylindrical extension without absorber could
cause danger stresses in laminate from the point of view of material fatigue and life-time of the
structure. TMD was designed and tuned to be the most effective in vibrations in the second eigen-
mode i.e. eigen-frequency of the tower. The weight of absorber is 1 tone, which is 1/10 of a
generalized (effective) mass of the second eigen-mode. TMD has usually higher damping properties
than the part of the structure, where it is installed, and thus, it could represent an significant origin of
non-proportionality of the damping.

4.2. Relative errors of response of numerical model on harmonic excitation due to approximate
solution

The discrete numerical model of structure was created in CALFEM, which is Matlab toolbox for
computing by the finite elements method. Basic model without TMD had 15 nodes, each with 3
degrees of freedom. The absorber was subsequently modeled as a concentrated mass connected to the
top of the tower with Kelvin-Voigt damping term and had one degree of freedom in horizontal
direction. Adding this degree of freedom into the model resulted in increasing of total number of
eigen-modes by one. This eigen-mode was associated due to tuning of absorber to the second eigen-
mode of the basic system. It means, that model with absorber had two eigen-modes, which are similar
in shape. However, they differ especially in a phase between absorber and the top of the tower see
Figure 1.

[ 111T

f,= 0,378 Hz £,=0,679 Hz £,=0,931 Hz f,=1,275Hz £=2,120Hz
(fip= 0,394 Hz) (fp= 0,806 Hz) (fp= 1213 Hz) (fip=2,109 Hz)

Fig. 1: The first five eigen-modes and eigen-frequencies of the structure with absorber
(in parentheses the corresponding eigen-frequencies of the basic system without absorber)

At first, the steady state response of the structure with absorber on a harmonic force located at the
top of the tower was calculated. The response were analyzed for an interval of the frequency of the
loading force (f=0 + 3 Hz), where the first four eigen-modes of the basic system lie. Damping matrix
of the basic system was proportional to the combination of the mass and stiffness matrix.
Multiplicative coefficients related to these stiffness and mass matrices were calculated from the given
structural damping ratio ({= 0,005) for the first two eigen-frequencies of the basic system. Factor of
the damping non-proportionality of the system has been examined as follows: a set of various damping
ratio of the TMD (dashpot absorber) was used ({rvp = 0 + 0,8), while constant structural damping was
kept. First seven eigen-modes were used for reduction of the matrix system (1) using transformation
(2) and two different solutions of response of this reduced model were assumed. The first one
concerned the direct solution of the reduced system with full modal damping matrix. The second one
took into account only the diagonal terms of the modal damping matrix. Relative errors of amplitudes
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of steady state response of the top of the tower €y, and absorber eyumg and of the phase difference
between the top and the absorber ¢, caused by the second approximate solution were calculated for a
set of Crvp. Specifically, the relative errors were determined for the first four dominant peaks of
frequency-amplitude curves see Figure 2, which lay near the eigen-frequencies of the undamped
system and where the highest response was noticeable. On Figure 2 only the part of investigated
frequency interval with the second and third peak is shown, for which the errors were the most
significant. The peak corresponding to the third eigen-frequency was not identifiable for nonzero
damping ratio {rvp and it wasn’t included in the analysis. The relative errors in determination of the
frequency of the peaks & together with all previously defined errors are summarized in the Table 1.

YTOP / YTDP-StatM: m

1.1 1.2 1.3 1.4

0.6 0.7 0.8 0.9

1
f [Hz)

Fig. 2: Dynamic magnification factor of amplitude of the top of the tower as a function of driving
frequency of the load for exact and approximate solution
(Blue solid line — exact solution, red dashed line — approximate solution, Cryp=0,2)

Tab. 1: Relative errors of the response caused by approximate solution for various values of {tup

(In parentheses the corresponding eigen-frequencies of the structure with absorber)

Peak n. 1(f,=0,378 Hz) Peak n. 2 (f,=0,679 Hz)

Ervp [/] 0 0,2 0,5 0,8  Crwnl/] 0 0,2 0,5 0,8
er[%] <01 <0,1 <0,1 026 g[%] <01 3,15 9,65 1048

Eviop [Yo] 0,01 2,11 12,69 29,61 &y [%] 0,03 37,15 79,40 89,61

Eymd [70] 0,01  -0,7 038 2,68 eyma[%] 0,01 19,09 56,23 68,18
€ [%0] 0,7 912 12,76 2633 &,[%] 0,28 10,89 17,50 10,09

Peak n. 3 (f4=1,275 Hz) Peak n. 4 (fs=2,12 Hz)

Ervp [/] 0 0,2 0,5 0,8  Crwn /] 0 0,2 0,5 0,8
g[%] <01 -1,75 -646 -547 &[%] <0,1 -028 -1,04 -2
Eviop [Y0] 0,02 9,16 45,74 68,60 ey, [%] 0,01 -1,97 0,38 9,33
Eymd [Y0] 0,02 2,66 20,30 34,28 &yyma[%] 0,03 -3,99 -10,44 -13,82
g [%] 0,57 1932 33,04 31,24 g,[%] 027 19,81 33,21 40,57

The table shows, that neglecting of mechanical interaction between eigen-modes resulted in significant
errors in amplitudes of the top of the tower especially for the frequencies corresponding to the second
and the third peak for nonzero {ryvip. These resonant frequencies lie very close to the tuning frequency
of the absorber and thus are more influenced by it than the frequencies of the first and fourth peak.
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With increasing of the damping of the absorber the errors also increase. This fact isn’t generally valid
for every numerical model of the structure with absorber. It depends as well as on a chosen model of
classical viscous damping of the basic structure and numerical model of the absorber as on the
difference of damping ratios of the eigen-modes of the structure and {rvp. The (rvp of a real absorber
installed into the existing tower was from practical point of view set equal 20%. This value of {ryp is
optimal for reduction of vibrations with frequencies close to the second eigen-frequency of the basic
structure. However, this value of {rvp is 40 times higher than the damping ratio of this second eigen-
mode. The relative error of the amplitude of the response of the top of the tower is in this case
significant and is equal almost 40% for the second peak see Table 1 and Figure 2. Similarly, the
maximal and appreciable error of amplitude of the absorber is equal 20%. It follows, that the non-
proportionality of the damping is in this practical case substantial. Amplitudes of approximate solution
are for almost every studied case lower than for exact solution. This fact could be explained by the
mechanical interaction between eigen-modes for non-classically damped system. It could be also
interpreted by different modal damping of eigen-modes for both solutions see Table 2. The final
results of the response are strongly affected by a number of eigen-modes of undamped system being
taken into the consideration. The controlling calculation of the response of the full system (1) on the
same excitation showed, that using a set of first seven eigen-modes resulted to acceptable maximal
absolute error less than 0,1%.

The influence of non-proportionality of the damping on the individual eigen-modes could be also
illustrated by different phases of their components. The components of the first six complex eigen-
modes, which correspond to displacements of the tower, are for the practical value of {ryp depicted in
the complex plane on Figure 3. The most influenced are the second, the third and the fourth complex
eigen-mode. Their components have different phases i.e. they don’t lie in the complex plane on one
line. On the other hand, the fifth, the sixth and especially the first eigen-mode almost correspond to the
real undamped eigen-modes, which are characterized by same phase of all components.

Tab. 2: Damping ratios of eigen-values of approximate ({ypp) and real ($) numerical model
for various values of {ryp

1* eigen-value 2" eigen-value
Crwmp [/] 0 0,2 0,5 0,8 Crvp [/] 0 0,2 0,5 0,8
C1/ 0,0047 0,0067 0,0087 0,0093 C[/] 0,0027 0,0597 0,0585 0,0381
Carp [/] 00,0047 0,0068 0,0100 0,0132 Cupp[/]  0,0027 0,0651 0,1586 0,2522

3" eigen-value 4™ eigen-value
Can ] O 02 05 08 Coml] O 02 05 08
C1/] 0,0033 0,1105 0,4505 0,8485 ([/] 0,0054 0,0551 0,0574 0,0385
Carp[/]  0,0033 0,0986 0,2415 0,3844 Capp[/]  0,0054 0,0594 0,1404 0,2215

5™ eigen-value 6™ eigen-value
Crwmp [/] 0 0,2 0,5 0,8 Crwp [/] 0 0,2 0,5 0,8
C1/] 0,0093 0,0182 0,0266 0,0282 (/] 0,0156 0,0178 0,0208 0,0230
Carp[/] 0,0093 0,0187 0,0327 0,0467 Capp[/] 0,0156 0,0179 0,0213 0,0247
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Fig. 3: Components of first six complex eigen-modes of structure in complex plane ({pyp = 0,2)

4.3. Calculation of indexes of non-proportionality and criterions as functions of damping ratio
of the absorber

For the investigated numerical model and for a set of (pmp the previously defined indexes and
criterions were calculated. In this chapter their values and recommendations of their applicability in
case of structures with absorber are given. The guidelines are based on comparison of the indexes and
criterions with complex character of the eigen-modes and relative errors given in Table 1. The focus
was aimed especially to errors of amplitude of the top of the tower.

The most general indication of non-proportionality of the damping is the non-fulfillment of the
diagonal dominance of the modal damping matrix. In Table 3 the ratio of absolute value of diagonal
term and the sum of absolute values of non-diagonal terms for each row of modal damping matrix as a
function of {rvp is evaluated. The cases for which the requirement of dominance is fulfilled are
printed in bold. From the table it follows, that the modal damping matrix isn’t diagonally dominant for
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all analyzed values of {rvp. The requirement of dominance is fulfilled only for zero (rvp and for
eigen-modes, which aren’t associated with the second eigen-mode of the basic system. The decrease of
ratios with increase of {pvmp corresponds with increase of the extent of the non-proportionality of the
damping.. Nevertheless, the diagonal dominance of the modal matrix could serve only as additional
not the decisive criterion for neglecting the non-diagonal terms. It follows from the fact, that although
relative errors for zero {rvp are small, the modal damping matrix isn’t diagonally dominant.

Tab. 3: Ratio of absolute value of diagonal term and the sum of absolute values of non-diagonal terms
Jfor each row of modal damping matrix as function of {rup

Eigen-mode (row) n.
1 2 3 4 5 6
0 1,453 0,422 0,583 1,539 7,917 34,642
0,2 0,084 0,235 0,373 0,334 0,286 0,691
0,5 0,049 0,226 0,361 0,312 0,198 0,326
0,8 0,040 0,223 0,358 0,307 0,176 0,236

Crwp [7]

The values of the left side of the condition (6) suggested by Hasselman (1976) is graphically
presented for particular eigen-modes and for various (ryp on Figure 4.

1—
0.9
08—
0.7—
0.6
0.5+

0.4—
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0.1 :j: " i » f= B
]

Hasselman’s criterion [/]

7

. = 4
B _ ) —oiy ®
2 3 4 5 s 2 Eigen-mode n. [/]

Eigen-mode n. [/]

Fig. 4: Graphical expression of Hasselman’s criterion for neglecting of mechanical interaction
of eigen-modes for various Cryvp (X...Crmp =0, 0...Ctvp =0,2; O...Crmp =0,5,0 ...Crmp =0,8)

The significant mechanical interaction between the second and third, the third and fourth as well as
between the fourth and the fifth eigen-mode was determined. On the other hand, small interaction
between the first eigen-mode and the others were found out. However these results come from
frequency proximity of these eigen-modes rather than from a distribution of damping in the system. It
could be demonstrated on the example of the mechanical interaction of the sixth and the seventh
eigen-mode. Relatively high value of interaction (0,2) didn’t change significantly with increasing of
the {rmp and also didn’t correspond to negligible error in calculation of the response using
approximate solution. It should be also noted, that condition (9), which is required for using
Hasselman’s criterion and which is related to ratios of diagonal a non-diagonal terms of modal
damping matrix, is fulfilled only for zero {rvp. However, the main disadvantage and the reason of
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unusability of Hasselman’s criterion is the fact that it finds out the mechanical interaction even
between eigen-modes of classically damped models.

Criterion suggested by Wartburton & Soni (1977) for neglecting of non-diagonal terms of modal
damping matrix was expressed by means of boundary value ¢, of the coefficient € see Table 4 and
Figure 5. For smaller values of ¢ than g, the condition (10) is fulfilled, for higher values it is not.
In comparison to Hasselman’s criterion the proposed criterion could identify the classically damped
system due to ratio of diagonal and non-diagonal terms of the modal damping matrix. In this case the
coefficient g, is theoretically zero. The authors proposed for problem in practice value of g, equal 5%.
This value should correspond to maximal achievable error of response equal 10%. For the first eigen-
mode the assumption of a small mechanical interaction based on analysis of the relative errors and
complex eigen-modes was confirmed with exception of the highest {ryp. For the lowest {ryp a small
non-proportionality of whole system was also confirmed. For higher values of {rvp especially the
practical one the coefficient g, for particular eigen-modes shows relatively good agreement with errors
of the top of the tower given in Table 1. On Figure 5a there is depicted the coefficient €, as a function
of {rmp for the first six eigen-modes. It shows almost the linear dependency of {ryp on g, i.e. increase
of the g, with increase of {ryp. The decreasing of the value of g, with increasing of {mvp occurs only
for values of {rvp lower than a specific {ryp for which the damping matrix is the best approximation
of the classically damped one see Figure 5b. This specific value of {rvp is in our case close to
damping ratio of the first and second eigen-mode of structure without absorber.

Tab. 4. Boundary value &, of parameter ¢ of criterion of particular eigen-modes
suggested by Wartburton & Soni (1977) for various Cryp

Eigen-mode n.
1 2 3 4 5 6
0 0,0010 0,0052 0,0071 0,0051 0,0009 0,0003
0,2 0,0129 0,1993 0,2734 0,2586 0,0536 0,0157
0,5 0,0336 0,5059 0,6942 0,6542 0,1354 0,0396
0,8 0,0543 0,8126 11,1151 1,0497 0,2172 0,0635

Crvo [/]

_ _ 12X 10
= —1. eigen-mode -~ =
& -2 eigen-mode / & 10
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Fig. 5: Boundary values &, of parameter & of criterion of particular eigen-modes
suggested by Wartburton & Soni (1977) as function of {tup

The summation based indexes 0,; of particular eigen-modes, which was proposed by
Prater & Singh (1986), are depicted as a function of {pvp on Figure 6. All of these indexes are
increasing with increasing of {pyp. Only for lower values of {ryp than specific value of {ryp, which
was defined in previous paragraph, the indexes have decreasing trend see Figure 6b. The values of
indexes 0;; for chosen Cryp are also quantified in Table 5. From the Table 5 and from the Figure 6b
follow, that for zero {rvp the first four eigen-modes are highly coupled. It doesn‘t correspond with
errors of solution of the response obtained from the analysis of numerical model and also with a
character of complex eigen-modes. The behaviour of indexes also shows, that for practical and higher
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values of Crvp the most influenced eigen-mode by damping term of absorber is the first one. It is in
contrast to an expected and confirmed presumption, that the most influenced eigen-modes are the

second, the third and the fourth one.
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Fig. 6: Indexes Oy; of particular eigen-modes as function of {ryp (Prater & Singh (1986))

Tab. 5: Indexes of non-proportionality of damping J,; for various values of Cryp

Eigen-mode n.
1 2 3 4 5 6
0 0,408 0,703 0,632 0,394 0,112 0,028
0,2 0,922 0,810 0,729 0,750 0,778 0,592
0,5 0,954 0,816 0,735 0,762 0,835 0,754
0,8 0,962 0,817 0,737 0,765 0,850 0,809

Crvp [/]

Another calculated response based indexes 0s3; of particular eigen-modes see Figure 7 and Table 6
express very well the trend of behaviour of obtained errors of peaks of the response in frequencies
near the corresponding eigen-frequencies. However, the calculation of indexes requires the solution of
the response of the whole system with full modal damping matrix. And thus no advantage of
calculation of indexes in comparison with the solution of the real and full problem is gained.
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Fig. 7: Indexes 03 of particular eigen-modes as function of {pyp (Prater & Singh (1986))

Tab. 6: Indexes of non-proportionality of damping 063; for various values of {rup

Eigen-mode n.
1 2 3 4 5 6
0 3,8e-5 93e-4 l,le-4 6,3e-5 le-5 78e6
0,2 0,017 0,177 0,117 0,033 0,005 0,002
0,5 0,113 0498 0401 0,177 0,071 0,003
0,8 0,240 0,659 0,577 0,332 0,172 0,025

Crmp [/]
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The values of the generalized determinant based index 8, and generalized indexes &, and J; of the
investigated numerical model suggested by Prater & Singh (1986) are for chosen {mvp given in Table
7. Index 9, indicates the unrealistically high value of non-proportionality of the damping. Even for the
realistic value of {ryp equal 0,2 it exceeds the border of total non-proportionality of the system given
by one. The other generalized indexes o, and J; are strongly affected by the number of eigen-modes
taking into account. Assuming in the solution of indexes one additional eigen-mode, which is
minimally influenced by absorber i.e. is almost classical, results in decreasing of both generalize
indexes 9; and 9s.

Tab. 7: Generalized indexes of non-proportionality of damping ;-3 for various values of Crup
Crvp [/]
0 0,2 0,5 0,8
d 0,089 0,693 0,762 0,781
S  2,6e-8 1,773 466,7 8022
8 1,7¢e-4 0,050 0,181 0,287

Index

The values of index 7 defined by Tong et al. (1994) show very high non-proportionality of the
system almost in the whole interval of investigated values of {ryp see Figure 8 and Table 8. Only in a
narrow interval of {ryp in the neighborhood of specific {ryp the index is minimized. This specific
value of (rvp corresponds as it was previously defined to the best approximation of the damping
matrix to its classically damped form. The values of the index don’t correspond to the results of
analysis of the error. For all chosen {ryvp the value of index are almost one, which stands for the total
non-proportionality of the damping. However, the errors caused by approximate solution are
especially for zero {rvp less significant than it could be expected from the value of index. This
conclusion of unusability of this index is also supported by the excessive values of upper bounds of
the relative errors given by (25) for all {ryp see Table 8.
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Fig. 8: Index of non-proportionality of damping I as function of {rup (Tong et al. (1994))

Tab. 8: Index of non-proportionality of damping I and upper bound of error of response
for various values of {tup

Crvp [/] 0 0,2 0,5 0,8
1 0,995 0,97 0,990 0,994
E 9,56 8,423 8,705 9,466

The prerequisite of the diagonal dominance of the modal damping matrix for a quantification of
the non-proportionality of the individual eigen-mode using indexes defined by Bhaskar (1995) has
been confirmed. The value of indexes is close to one which represents the absolute non-proportionality
even for the {rmp= 0,2 see Figure 9. For higher values of {rvp the indexes are higher than one. On the
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figure the indexes of each eigen-mode were calculated for driving frequencies of the loading equal to
the first six eigen-frequencies of the structure with absorber. Only indexes of eigen-modes for which
driving frequencies are not equal to their corresponding eigen-frequencies are depicted. The indexes of
particular eigen-modes and corresponding eigen-frequencies are summarized in Table 9.
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Fig. 9: Indexes of non-proportionality k; of particular eigen-modes for driving frequencies of loading
equal to eigen-frequencies of the system with absorber for various {pyp (Bhaskar (1995))
(X---C_,TMD :0,' 0---QTMD :0,2,' D---QTMD :0,5,'0 ---QTMD :0,8)

Tab. 9: Maximal values of indexes of non-proportionality «; of particular eigen-modes and their
corresponding eigen-frequencies for various values of {ryp (Bhaskar(1995))

Eigen-frequency and eigen-mode n.
1 2 3 4 5 6
0 0,688 2,370 1,715 0,650 0,126 0,029
0,2 11,843 4,262 2,683 2992 3,501 1,448
0,5 20,609 4,433 2,773 3,202 5,052 3,068
0,8 25,123 4,477 2,796 3,258 5,671 4,239

Crvp [/]

The upper bounds of the relative errors in modal coordinates derived by
Gawronski & Sawicki (1997) are given for investigated model in Table 10.

Tab. 10: Relative errors of modal displacements due to neglecting of non-diagonal terms of modal
damping matrix for various values of Cryp (Gawronski & Sawicki (1997))

Eigen-mode n.
1 2 3 4 5 6
0 0,029 0,082 0,055 0,045 0,008 0,002
0,2 3,713 1,923 0,345 1,386 0,263 0,101
0,5 15,829 4,485 0,727 3,382 0,928 0,244
0,8 30,715 6,327 0,935 4915 1,657 0,378

Crvp [/]

Calculated upper bounds of errors are for {rvp equal and higher than 20% very high. The highest
bound was obtained for the modal displacement which corresponds to the first eigen-mode of the
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system. Although the influence of the damping term of the absorber should be more significant in case
of the second, the third and the fourth eigen-mode. We can’t directly compare the errors of generalized
displacements and errors of modal displacements. However we can‘t expect for these excessive upper
bounds such a real level of relative errors of the response in generalized co-ordinates.

The coupling indexes y, of individual eigen-modes defined by Venancio-Filho et al. (2001) are
given in Table 11. Under assumption, that zero stands for minimum and one for maximum non-
proportionality, it follows that in all investigated cases index is very high. This fact doesn’t correspond
with calculated character of complex modes and relative errors.

Tab. 11: Indexes of non-proportionality of damping of particular eigen-modes for various values of
Srup (Venancio-Filho et al. (2001))

Eigen-mode n.
1 2 3 4 5 6
0 0,050 0,430 0,430 0,108 0,009 0,001
0,2 0,277 0,880 0,880 0,846 0,467 0,120
0,5 0,508 0,950 0,950 0,934 0,695 0,261
0,8 0,627 0,968 0,968 0,958 0,787 0,364

Crmp [/]

5. Conclusions

The article deals with an applicability of till now published indexes of non-proportionality of the
damping in the case of slender structure (TV tower) equipped with absorber which is subjected to
the harmonic excitation. The focus is also aimed at criterions for neglecting of non-diagonal terms
of the modal damping matrix of its numerical model. These terms express the coupling of modal
coordinates i.e. the mechanical interactions of individual eigen-modes. The applicability is
assessed using comparison of indexes and criterions with character of complex eigen-modes and
with relative errors of the response that are caused by neglecting of non-diagonal terms for
selected values of damping ratios of absorber. From the practical point of view the errors
corresponding to the dominant peaks of response curve of the top of the tower were taking into
account. None of investigated indexes and criterions did fully correspond to the obtained
solutions. The summation based index suggested by Prater & Singh (1986), indexes proposed by
Bhaskar (1995) and Venancio-Filho et al. (2001) indicated very high values of non-proportionality
particularly for the first four eigen-modes for all selected damping ratios of absorber. Even for zero
damping ratio for which the calculated errors of the response were negligible and also for the first
eigen-mode, which is almost identical with real eigen-mode of the undamped system. Also the
generalized index suggested by Tong et al. (1994), determinant based index proposed by
Prater & Singh (1986) indicated almost total non-proportionality of the system for all investigated
cases. The analysis confirmed that criterion suggested by Hasselman (1976) couldn’t be used
because it supposes the mechanical interaction between individual eigen-modes even for
classically damped structures. The relatively good agreement between calculated relative errors
and proposed criterions was obtained for criterion proposed by Warburton & Soni (1977). The
boundary values of its parameter € for which the criterion is still fulfilled could also serve as an
approximate index of non-proportionality of particular eigen-modes. Analysis of the response also
highlights the necessity of prerequisite of non-proportional damping, when passive damping
equipment is installed into the structure and when the detailed behavior is investigated.
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