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GENERALIZED LINEAR MODEL WITH AERO-ELASTIC
FORCES VARIABLE IN FREQUENCY AND TIME DOMAINS

J. Naprstek, S. Pospisil !

Abstract: Behavior of slender aero-elastic systems in a sub-critical domain including position of the low-
est critical state is commonly investigated using double degree of freedom (DDOF) linear model. The most
frequently used are neutral models treating aero-elastic forces as certain constants corresponding to system
parameters and stream velocity. Although this approach is working well, it shows a number of shortcom-
ings. For this reason modeling by flutter derivatives or indicial functions has been launched. However,
these two groups of models have been developed separately one from each other. It seems they are rather
isolated until now. Moreover they mostly suffer from various gaps in mathematical formulations and further
treatment. The paper tries to put all three groups together on one common basis and to demonstrate linkage
of them. This approach allows formulate more sophisticated models combining main aspects of all groups
in question keeping the DDOF basis. These models correspond by far better to results of wind channel and
full scale measurements.
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1. Introduction

Slender prismatic structures exhibited to strong dynamic wind effects (bridge decks, towers, chimneys,
etc.) are frequently analyzed using a double degree of freedom (DDOF) linear model working with
heaving and torsional components of a cross-section, see e.g. Bartoli & Righi (2006). This aero-elastic
model is often adequate to study the system response until the first critical state is reached. Relevant
mathematical models appearing in literature differ in principle by way of composition of aero-elastic
forces. This criterion enables to sort them roughly in three groups. The first group can be possibly called
neutral models - aero-elastic forces are introduced as suitable constants independent from excitation
frequency and time. The second one involves flutter derivatives - they respect the frequency dependence
of aero-elastic forces, see Scanlan & Tomko (1971).

Finally the third is working with indicial functions - they are defined as kernels of convolution inte-
grals formulating aero-elastic forces as functions of time, see Wagner (1929), Kiissner (1954), Garrick
(1938) and Scanlan, Beliveau & Budlong (1974). Second and third groups have been developing sep-
arately from each other and seem to be isolated until now, see ? and Costa et al. (2007) for example.
Moreover they mostly suffer from various gaps in mathematical formulations and further treatment. The
paper tries to put all three groups together on one common basis and to demonstrate linkage of them.
This approach allows formulate more sophisticated models combining main aspects of all groups keep-
ing the DDOF basis. These models correspond by far better to results of wind channel and full scale
measurements and seem to be very promising for the future investigation and practical applications.

For purposes of this study the bridge girder is considered as axially symmetric or almost symmetric
with possible response components in heave u (vertical direction) and pitch ¢ (rotation around .S point).
An outline can be seen in Fig.1. In principle all types of above models have been investigating many
years. Each of them has its advantages and shortcomings. However most of them suffer very often from
mathematical gaps preventing their generalization and synthesis on formal basis in order to identify some
special phenomena remaining hidden when dealing with heuristic approaches only. Let us characterize
now briefly the groups of models mentioned above in forthcoming parts.
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2. Neutral models

Neutral models are relatively the most simple and enable to provide many results analytically in a form of
closed solution. These models have been extensively studied for instance in PospiSil & Naprstek (2011).

Although there exist many versions of a basic formulation,
in principle the most general model of neutral type can be
expressed in the form:

Gi+bm-t—hg-o+w2-u—p-p =0 1
$+q-u+br-p+gp-utwi-o =0

where we have denoted: w2, wg,— total eigen-frequencies

in relevant components including stiffness and aero-elastic
components; b,,, by— total damping parameters including
internal structural damping and aero-elastic contribution;
q[(ms)~!] or p[m - s72] gyroscopic or non-conservative
forces of aero-elastic origin respectively; g[m 2], h[m?]
auxiliary constants serving for dimensional compatibility
of the above equations (they can be regarded as certain
characteristics of the cross-section).

Fig. 1: Schematic DDOF model of
a bridge symmetric cross-section under
wind loading.

Parameters ¢, p in general don’t include any static components which follow from elastic properties
of the system itself, they consist only of aero-elastic terms vanishing for zero velocity of the air stream.
So for stream velocity V' = 0, the system (1) degenerates in two independent equations.

The main tool for stability investigation is, together with the system (1), its characteristic equation:

D = X'+ X(by + br) + A (wi + w2 + bmbr + hg®)+

FMw2by 4+ wbm + (14 gh)pg) + w2w? + gp* = 0 @

The resulting characteristic equation represents annuled polynomial of the fourth order (n = 4) with
roots A1, A2, As and A\y. The trivial solution of system (1) is stable only if a real part of all four roots is
negative. In other words, stability limits are given by conditions:

Re(\) =0, i€(l,...,4) 3)

Consequently, the trivial solution of system (1) is stable in a domain representing an intersection of
sub-domains Re(\;) <0, i€ (1,...,4).

The system (1) and the characteristic equation (2) can provide a lot of information regarding motion
stability, critical velocities V.., system response on stability limits, etc. Consequently, it enables to
predict flutter/divergence onset velocity as well as to estimate their shapes in a particular case. However
aero-elastic coefficients in Eqs (1) are introduced as constants corresponding to certain conditions ruling
around the cross-section. Anyway, these coefficients are functions of V' and w, and therefore some
iterative process should follow balancing these effects in order to harmonize velocity V' with velocity
Verit. Despite these shortcomings the applicability of neutral models is quite wide if the variability of the
aero-elastic terms is approximately linear. Otherwise one of more sophisticated models should be used,
as we will see in next two parts.

Strategy of the stability investigation can be based on Routh-Hurwitz inspection of Eq. (2). The
detailed analysis and relevant results can be found e.g. in Ndprstek & PospiSil (2001), Néprstek, J.
(2007). The most important types of aero-elastic stability loss (flutter and divergence) and their possible
interactions are there given together with the conditions of their existence.

3. Models with flutter derivatives

Flutter derivatives have been introduced many years ago, see for instance Theodorsen (1935) and more
recently Poulsen, Damsgaard & Reinhold (1992). Their various aspects have been investigated exten-
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sively for a long time in the aircraft, civil and other branches of engineering. They have been introduced
as functions in the frequency domain related to a particular cross-section without any link with other
system parameters (inertia, elastic stiffness, internal damping). Nevertheless they can be understood as
a certain extension of the damping and stiffness matrix elements. Flutter derivatives can be interpreted
as amplitudes ) or M of the heaving forces or the pitching moments, respectively, which should reach
a unit amplitude of one response component under harmonic external kinematic excitation, while re-
maining components are kept zero in the same time. Thus the flutter derivatives are the dimensionless
functions of the excitation frequency w, stream velocity V' and geometric characteristic of the cross-
section B [m]. They are combined in one dimensionless argument x = Bw/V. So the basic relations
between kinematic and force components can be roughly outlined:

U u @ ®
Q : Hl(lﬁj) H4(/<V) HQ(KZ) Hg(li) B
M : A1 (k) Aq(R) As (k) As(k) Kk = 7‘*) 4)
Q K)

A1 (k) A1o
(

: (%) A13(k) Aug
M A21 /ﬁ) AQQ(H) A23(

(
/ﬁ) AQ4(/€)

where following notation has been introduced: H;(k) or A;(k) - amplitudes of flutter derivatives cor-
responding to heaving forces () or pitching moments M amplitudes due to individual sets of unit kine-
matic harmonic excitations of a proper cross-section in an aerodynamic tunnel (notation and indexing
corresponds to literature referenced); A;;(k) - alternative notification of flutter derivatives assigned with
respect to the table in Eq. (4);

Since we try to write down final formulae of ) or M amplitudes, there appear expressions of the
type kA11(k) - u(t), kA2s(k) - o(t), etc. They are to see everywhere since classical until contemporary
literature, e.g. [Scanlan] and many others. However, they are inconsistent mixing both frequency and
time variables together. Subsequent integral transform would be unapplicable. Therefore respecting
harmonic regime of the flutter derivatives (functions of w) also displacements u(t), ¢ () and their time
derivatives should be expressed correspondingly, for instance in the form of their Fourier transform. It
means in particular as iwU, U, iw®, ®. So that with reference to notification (4) the heaving and pitching
aero-elastic forces in the frequency domain can be written as follows:

Qw) =  unV? (%‘”?BKAM + K% A19) U + MmVQ(%’?Al?) + k*BAw) ®,  pm = o/m

&)
M(w) = pV2B? (lvwmAgl + %HQBAQQ) U+ MIV2B2(%I€A23 + K2 A4) @, pr = 20/1

where m or I are a mass or mass inertia moment of the vibrating body and p is a specific mass of the air.
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Fig. 2: Outline of flutter derivatives; rectangular cross-section, ratio 1:5; position of A11 — Asy pictures
correspond with table in Eq. (4).
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The definition itself of flutter derivatives apparently implicates that they can serve only to develop a
linear mathematical model as their application is based on the superposition principle. Flutter derivatives
can be incorporate into the governing equations of type (1) only if these equations are expressed in the
frequency domain. Hence the system (1) should be written in a form of the two-way Laplace transform
(integration ¢t € (—00, +00)) to unify the basis of individual parts. Transformation exists if the system
is stable and therefore influence of initial conditions disappear with increasing time. It means, however,
that only steady state problems with explicit frequency w = —i\ can be investigated. Finally we write
the complete system in the frequency domain, so that it has a character of an algebraic (unknowns U, ®)
system:

A2+ X (b + VB - kA1) + (W2 + V2 - K2 Agg) ;
A i VB2 kA + V2B - k241 | | U 0

A- VB2 kAg + V2B - k2 Ag ; - ©
M : ur KA21 + pr K™ A22 ) 0

A2 4N (br + M[VB3 . HA23) + (wi + M1V2B2 . I€2A24)

The shape of flutter derivatives for the rectangular cross-section as they are plotted in Fig. 2 is commonly
accepted. Let us go briefly through individual graphs in this figure. It can be observed that functions A;;
related with w, ¢ are odd functions, while those related to u, o are even with respect to the vertical axis.
Indeed this fact can be shown also theoretically using Theodorsen functions, see Theodorsen (1935).
Looking through Fig. 2, it is obvious that the courses of individual A;; are not "dramatic”. Hence with
respect to the interval length needed on the 1/ axis, only the first and the second terms of the odd
or even polynomial expansions seems to be satisfactory to characterize A;; in equations (6). Thus for

instance: 1 1 1 1
An~an—+bin—, Aip~rar5+ba—, et (7N
K K K K

where a;; and b;; are relevant dimensionless coefficients of the polynomial expansion. These coefficients
can be obtained fitting relevant polynomials into experimental results.

Let us note that function values of A2 and Ago are markedly small. Indeed, dealing with a symmet-
rical cross-section and supposing perfectly uniform stream velocity in a wind tunnel, functions A2 and
Ajgy should vanish identically. Their non-zero values presented in Fig. 2 are most probably the results of
imperfections ruling in experiments. Despite this fact, these terms have been included to keep theoretical
consistency of relevant matrices (many papers omit those and work with six derivatives only).

Let us introduce polynomial expansions Egs (7) into Eqs (6). Being aware that w? = \?, one obtains
a modified system:

Q: |qu, quz| |U 0
. = 3
M: | g, g2 ® 0
g = (A% + Abm + sV Ban) + (w2 + i V2a12)) — i (35011 + 55 52b12) |
g2 = (ApmVB2a13 + pimV?Baiy) — Mm(%vgbli" + %%bl‘l) ’ 9)
Q1 = ()\MIVBQGQI + MIV2BG22) - NI(%V%?l + 712%8722) d

g2 = (N + Xbr + prV Bdags) + (w2 + purV?B2a24)) — pr(5V? Bbaz + 35V b24) .

The neutral models following Eqs (1) include system parameters, which implicitly incorporate the influ-
ence of surrounding air, for instance b,, = by, syst + bm.air, €tc. Depending on a strategy of a particular
analysis the additional part b,, 4 is subsequently considered as a function of the stream velocity V', but

any relation with the frequency w is always omitted. Anyway, terms containing coefficients a;; in Eqs
(9) can be considered as a certain “first approximation”, e.g. by, qir = iV Caii, wi air = tm V2a9,

etc. So that respecting terms with a;;, one obtains result analogous with the neutral model Eqs (1), where
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the dependence on the stream velocity V' is obvious approaching zero with V' — 0. It is apparent, see
Fig. 2, that a;; can be positive or negative. Therefore introduction of terms with a;; can result (on the
level of the “first approximation”) in an increase or a decrease of effective system parameters due to the
aero-elastic effects. In particular non-conservative and gyroscopic character of the system follows solely
from these terms as the system itself doesn’t contain extra-diagonal elements. Non-symmetric character
of the system results from character of a;; signs:

a13 <0, a4 <0, a9 >0, agg>0 (10)

and therefore symbolical link of some coefficients in Eqs (1) and elements specified in Egs (9) can be
written:
—p = pmV?Bays <0, g = prag/pmais <0,  gp = prV?Bagy > 0, (an
q=pVB%an >0, h= pmaiz/prag <0, —hqg= p,V B%a3 <O0.

Coefficients b;; represent the most simple quantification of the frequency w influence within aero-elastic
forces, see Eqs (9). Looking over Fig. 2 we can see, that the second terms in expansions Eqs (7)
arithmetized by coefficients b;; can be considered significantly smaller especially for rising w.

In order to inspect the primary form of the differential system, let us make an inverse transform of
Egs (8), (9) back to the time domain. After tedious manipulation, the differential system including the
influence of the flutter derivatives on the level of approximation Eqs (7) can be written as follows:

i +bm (i — 1?11 f — hq(@ —n*Bi3 f dr)
+w?2 (u —n?Pr2 ft(t—r)u(T)dT) —n?B14 f t —7)(7)dT) =0

(12)
¢ +q(t —n*Pa f 7)d7) + by (¢ — n*Pas f 7)dT)

+gp(i — n*Bar 7f (t = 7)p(7)d7) + Wl (p — n*Poa ft (t=7)p(r)dr) = 0

Both of the systems (8), (12) can be immediately used for further investigation. The system (12) is an
extension of (1). It demonstrates memory properties due to convolution integrals. In principle the inte-
grals could be avoided differentiating twice both equations of the system. However resulting equations
of the fourth order are less suitable for further analysis than the form of Eqs (12). Especially stability of
the numerical solution of Eqs (12) is far better.

Nevertheless, let us focus to a main tool of the dynamic stability analysis. It follows from the system
(8) representing a condition of its zero determinant. Provided the matrix of the system Eq. (8) is multi-
plied by a factor A2, the condition of the stability gets a form of the characteristic equation of the eight
degree of the parameter \:

CLQ)\B + al)\7 + ag)\G + ag)\5 + a4)\4 + a5)\3 + CLG)\Q +a7A+ag =0 (13)
ag = 1 y (a)
a1 = (bm +br) + (umV Bani + 1V B3ass) (b)

az = (Wi + w2 + bmbr) + (umV?>a12 + prV?B?ags 4 bypprV B3ags + brpmV Bayi ()

+im MV 2B*(a11a23 — a13a21)) , (14)

as = bmw + b[w + ,umw2 VBaii + M[(A)ZVB?’Cng + prbm V2B2ag94 + /Lmb[V ais (d)
+ummV B3 (anaz% + a12a23 — aizasy — aisasn)
— 111 V3Bbag — fim Y5 b1
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ay = waw? + pmwiV3ars + prwi V2 B?ags + pnpr VA B2 (a12024 — a14a22) (e)
+mpir VA B (—agsbiy —3a11b23 + a21b13 + a13b241)
—pu1bm V3 Bbag — panbr Vg bin — prV3Abos — fim zbiz

as = pmprV>°B(—a11bay — agsbia — a12bas — ag4biy ()
+a14b21 +4a22b13 + aizbaz + a21b14) \
—purbm V424 — pimbrgzbi2 — piw2V3Bbag — pmw? Y5 b1

ag = pmprV(—a12boy — a24£712 + a14b2 + azabia) (g
—p1w2V 4oy — panw? Fabiz + VO (b11bas — barbis)

a7 = ,Um,ul%(_bl4b21 — bi3bag + br1bog + b1abo3) , (h)

ag = me%z(bmbm — b1aba2) . (1)

As it has been mentioned terms containing b;; are relatively small and represent a certain “correction”
of the main part which is given by terms with a;;. Moreover b;; related with 1, u are even significantly
smaller than those related with ¢, . So it can be put approximately: b1 = 0, bi2 = 0, bo; ~ 0, byy ~
0. Therefore in Eqs (14) coefficients a7, as = 0 and ag — ag get simpler. Roots A7, Ag # 0 and hence
the remaining part of the characteristic equation Eq. (13) can be divided by A\2. Finally the degree of
the characteristic equation drops from eight to six. Thus let us rewrite this one together with simplified
coefficients ag — ag:

ao)\6 + (Il)\B + ag)\4 + CL3)\3 + a4>\2 +asA+ag =0 (15)
ap = 1, ()
a1 = (bp + b1) 4+ (mV Bair + prV B3ags) | (b)

as = (OJ?L + w?P + bmb[) + (,umV2a12 + M1V2B2a24 + bm,u[VBSagg, + brumV Bag: (c)
+mpr VEB* (a11a23 — ar3a21))

az = bmwfg + brw? + meZ,VBan + piw2V B3ags + purbm V2 B2ags + umbrV2aiz  (d)
+pmpr V3B3(a11a24 + a12a23 — a13asy — asas1) — V>3 Bbag (16)

ay = wgwfp + meivzalz + M[WELVQBQ(IM + Mmu[V4B2(a12a24 — a14a22) (e)
+1m s VAB2(—a11bag + a21biz) — prbpm V3 Bbag — purV=3bay

as = pmprV°B(—a11boy — a12bog + asabis + aibis) ()
— b VAboy — urw2V3 Bbos

ag = pmprVO(—a12bay + asebra) — prrw2V=iboy . (g)

Although Eq. (15) is approximate only, it is obvious that higher degree of the stream velocity influence
is focused rather on the rotating component and its velocity: ¢, ¢, while heaving component and its
velocity corresponds rather with the neutral model in Eqs (1). The structure of Eqs (16) suggests some
more possible simplifications canceling remaining b;;. Such step would lead to full analogy with the
neutral model (1).

4. Generalized Routh-Hurwitz method

Dynamic stability of MDOF systems is closely related with eigen values of the characteristic matrix.
If their real parts are all negative, the system is stable. To carry-out a general and careful analysis,
a strategy based on an inspection of the characteristic polynomial P()) is preferable. In such a case
properties of the characteristic matrix are reflected in polynomial roots. So that limits separating their
negative and positive real part values should be found. A large group of methods for searching these
limits is based on properties of the Hurwitz matrix H € R™*™ and its diagonal sub-determinants. Then
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the basic principle requests that all diagonal sub-determinants should be positive. Thus zero value of sub-
determinants indicate individual stability limits. Here only a technique of this procedure will be outlined.
For a rigorous mathematical proof, see monographs, i.e. Gantmacher (1966). Following scheme can be
outlined:

PA) = agA\" + ar N P+ a2 4 4 ap A+ an (17)
ai, az, as ,..., A2n—1
ao? a27 a4 PR | a’2’l’L*2
0, a1, az ,..., azp-3 a1 =0; k> (n—1)/2

H = 0, ap, a2 ,..., azpn—4 ; (13)
0, 0, a1 ,..., asp_s agk, =0; k>n/2

In other words, elements of the 1st row are coefficients of the odd powers A completed with zeroes in the
right part of the row. Similarly the 2nd row consists of coefficients of the even powers A. The 3rd and
4th rows correspond with 1st and 2nd rows being shifted one element to the right. Similarly 5th and 6th
rows, etc., as far as the last non-zero element asg1 Or agy reaches right boundary of the row.

In order to facilitate and make more transparent the sub-determinants evaluation, the matrix H is
subjected now to triangulation using the Routh algorithm (remembers the Gauss elimination process).
In the first step: The odd rows remain intact. From the even rows are deducted the respective odd rows
multiplied by the factor ag/a;. Further steps are analogous until the (n — 1)th step is done. The whole
process can outlined as follows:

a/17 a37 a57 a/77 AR | a2’l’b—1 a17 (1/3’ (1/5’ a77 AR
07 blu b37 b57 CR) b2n—3 07 blu b37 b57
0, ay, as, as, ..., a2p—3 0, 0, C1, C3, ...
H(l) = 0, 0, by, b3, ..., bon—s - ... H(n—l) = 0, 0, 0, dy, ... (19)
Oa Oa ai, as, , A2n—5 Oa Oa Oa Oa

where in H ;) has been denoted: by = a2 — a3 - ap/a1, bs = a4 — as - ag/ay, etc. The matrix H,_y)
emerging after the (n — 1)th step is triangular. Its diagonal sub-determinants can be evaluated easily:

Ay =ay, Ag=a;-by, Az=ar-bi-cp, ... (20)
Hence we can state that the system is stable if it holds:
A; >0, i€ (1,n), ag >0 20n

Although formulae Eq. (20) look to be simple, diagonal elements aq, b1, ¢1,dy, ... are more and more
complex. If a further analysis suffices to be numerical, then following a certain strategy of system
parameter series, numerical value of all A; can be evaluated for each system parameter combination.
Then going throughout A; values, a number of sign changes within ¢ € (1,7n) is inspected. If all A; are
positive, there are no sign changes and the system represented by the polynomial Eq. (17 is stable.

Let us add that the diagonal elements in the H,,_; matrix after the elimination process can be written
in a closed form:

a; = A1, by =2Ay/A, g =Az/As ... 21 =Ap /A2, 21 =An/N 1 =a, (22)

where x; or z; means diagonal element in the n — 1 or n row, respectively. Very cumbersome but
elementary process leading to formulae (22) has been omitted. On the other hand formulae (22) can be
directly deduced from Eqgs (20).
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Routh-Hurwitz (RH) conditions Eq. (21) are necessary and satisfactory and therefore giving unique
results. However, when an analytic investigation is necessary, then to use solely sub-determinants A; in
an analytic form is realistic until let say n = 4. Nevertheless RH conditions Eq. (21) can be combined
with Descartes rule. This theorem requests positive value of all coefficients of the polynomial Eq. (17),
i.e. a; > 0, to keep real part of all roots negative. Because Descartes rule represents the set of necessary
and not satisfactory conditions, it should be combined with RH conditions Eq. (21). The combination
of both approaches makes possible to simplify the process of the stability analysis, as polynomial co-
efficients are incomparably simpler than RH determinants. Putting both sets together it can be shown
that many of particular conditions are consequences of the others. Therefore as much minimized set of
satisfactory conditions as possible should be selected. This selection can be done by sight until n = 4.
For higher degree of a polynomial a formalized tool is necessary.

One possibility of an effective selection is offered by Liénard theorem. It is based on a knowledge
that fulfilling conditions a; > 0, RH conditions Eq. (21) are no more independent. For instance at n = 4
only one condition A3 > 0 is independent. With reference to Gantmacher (1966) for the proof and other
mathematical details, we provide only instructions of the theorem application. Relevant conditions of
negative real parts of polynomial (17) roots can be formulated in one of four versions:

(a) ap >0, an_o >0, ey A1:a1>0, A3>O,...
(b) an >0, ap—g >0, ceey Ay >0, Ay >0,... 23)
©) an >0, an_1>0, apn_3>0, ..., Ai=a1 >0, A3>0,...
(d) anp >0, an—1 >0, apn—3>0, ..., Ay >0, Ay >0,...

It follows from formulations Eq. (23) that positivity either of all coefficients a; or one of subsets
Gy Qp—2, «..y Ay, Gn—1, Gy —2 invalidates the full independency of the determinant conditions (21). Namely
positiveness of the odd Hurwitz sub-determinants implicates positiveness of the even Hurwitz sub-
determinants and vice versa.

Let us demonstrate the above algorithm for a system n = 4. Respective condition sets read:

coefficients: ag >0, a3 >0, az>0, a3>0, ag4>0, (a)
. (24)
sub-determinants: A; = a7 > 0, Ay =aj-as —asz-ag >0, (b)
Agzag-Ag—a4-a%>0, Ay =aq-A3>0.

The condition A; > 0 is included in Eq. (24a), condition A > 0 must be fulfilled if A3z > 0 should
be in force and A4 > 0 follows from (24a) and Asg > 0. Thus if conditions (24a) are valid then among
RH sub-determinants only Aj is independent and must be taken into account. So we can see, that such
arrangement of conditions comply with the third version of the Liénard theorem, see Eq. (23c). This set
of conditions is popular to process problems upto n = 4. Anyway, such condition sets can be proceed
also by way of visual assemblage. However problems n > 6, which are under consideration, should be
discussed using one version of the Liénard theorem, see Eq. (23).

Let us try to configure conditions for n = 6. First of all following coefficients of the polynomial
should be positive, see Eq. (23¢) or (23c):

ap=1>0, a1 >0, a3>0, a5>0, ag>0 (25)
With respect to Eq. (23c) it should hold:
A1 > 0, Ag > 0, As >0 (26)

The condition ayp = 1 > 0 is explicit and conditions a; > 0 and A; = a; > 0 are identical. Conse-
quently, considering conditions (25), only sub-determinants Ag and Aj are independent. Together with
(25) they make the close set of satisfactory conditions determining the negative real part of polynomial
P() roots for n = 6. For n = 6, respective sub-determinants have the form as follows, see basic form
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of the H matrix (18):
As = ay-az —ap-as,
A3 = a3y — a%a4 “+ apaias
Ay = a4z — az(asAy — a2ag) + ao(arasas — aoag — ajasag) 27
Ag, = a5A4 + a1a5a6A2 — agaﬁAg — a:{’a%
AG = a6A5

Redundancy of sub-determinants (27) (or independency of A3 and As) when conditions (25) are taken
into account is obvious. Going through Eqs (25) and (27) once again, we can see that also other versions
of Liénard theorem are applicable, in particular (23d).

5. Numerical experiments related to real example

Let us recall conditions (25) and (26) together with Eqs (27). They should be carefully analyzed. Ap-
parently the most transparent illustration of their character and interaction can be outlined in the plane
w2 x wf}. With the help of this pictures one can see the influence of individual parameters on the sta-
bility of the basic system while creating limits identifying the change in stability character. Conditions
a; > 0and A; > 0, treated usually separately in the literature have now gained general meaning. Stabil-
ity conditions may intersect mutually and thus create separated instability domains in which individual
generalized forces need not be necessarily positive due to non-conservative and gyroscopic influences.
Therefore traditionally discussed types of dynamic stability loss appear here as special cases of one gen-
eral mechanism treated above. So that going through one can detect all types of instability dealing with

the advanced neutral” model proposed here.

The Fig. 3 shows the result of the analysis for the rectangular cross-section that has been analyzed in
the wind tunnel. The characteristics of this cross-section is described in Table 1.

Tab. 1: Characteristics of the rectangular cross section and measured values of critical wind speed.

Vc(l) is taken from the experiments, see Krdl et al. (2011) and VC(2) results from the presented method
respectively.

mass  inertia width frequency frequency damping damping speed speed

m I B Wy wso Cu Cﬁp ‘/c(l) ‘/'0(2)
[kg/m] [kgm] [m]  [s7']) [s7'] [(%] (%] [m/s] [m/s]
4.02 0.0023 0.30 4.900 4.048 0.9 1.3 9.0 8.5

The graphs are actually the stability diagrams for certain value of the wind speed. For much simpler
model that is described in the article by PospiSil & Néprstek (2011) four planar curves divide the plane
into several zones of stability and instability. By using the advanced neutral model the figure is more
complicated, however the stability domains can be also observed. For example, the a5 divide the plane
w2 x w?o into two semi-planes where the right one is the stable zone. The Ay is the most complicated
condition being a result of combination of various «a; including A3 and a4, the latter one being a hyper-
bola with the axis in the second and fourth quadrant. This is know as a divergence stability conditions,

see PospiSil & Néprstek (2011).

Higher determinants Ay and Ag create complex parametric curves combining lower order determi-
nants together, see Eqs (27). For example, in the figure with Aj, besides the lines, the parabolic shapes
standing for the flutter condition, see PospiSil & Néprstek (2011), are visible. The zone between those
parabolas is the stable one, however with increase of the wind speed V' this zone changes, the parabolic
shapes may merge or undergo other transformation so that the stability domain is narrower in the general
term of the word.
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Fig. 3: Conditions of stability depicted in the frequency plain, wg X wi.

The influence of the wind velocity can be seen more transparently at the different type of diagrams.
The Fig. 4 illustrates the use of the described analysis for the evaluation of the critical wind speed, i.e.
the speed when one of the conditions (25) and (26) is violated. Only the independent conditions are
presented. In particular: a; — ag, see Eq. (25) and two determinants Ag and As, see Eq. (26). It can be
seen from the Fig. 4 that the condition Ay crosses the zero at the speed V' = 8.5m/s. This corresponds
quite well to the experimentally verified value V' = 9.0 m/s. Obviously, the critical speed depends much
upon the measured value of structural damping.

Generally, the coefficients as, ag and the determinants Az and Ag are very sensitive to precise de-
termination of the flutter derivatives, which is usually very complicated task for both very low values of
k (higher values of the reduced wind velocity V') as well as for the values where the reduced frequency
is very high. These regions determine the signs of the coefficients b;;, which are used for the fitting
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of the flutter derivatives. Higher order expansion would improve the analysis. On the other hand this
improvement would be lost in doubling of the order of the characteristic polynomial (13).
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Fig. 4: Course of the some coefficients a; and determinants A as function of velocity V. The point of the
zero crossing at individual coefficients determines the loss of the stability, which may be of any kind.

6. Conclusion

Two types of double degree of freedom (DDOF) linear systems interacting with aero-elastic forces have
been investigated and compared. The DDOF system under study describes inherent dynamic features
of a slender prismatic beam attacked by a cross wind stream of a constant velocity (long bridge decks,
guyed masts, towers, etc.). Relevant mathematical models of aero-elastic forces appearing in literature
differ in principle by way of composition of aero-elastic forces. From this point of view two groups
have been investigated: neutral models, where aero-elastic forces are introduced as suitable constants
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independent from excitation frequency and time and models using flutter derivatives for modelling the
aero-elastic forces.

The second group respects explicitly the stream velocity and the frequency of the system response. It
succeeded to put both groups together on one common basis to demonstrate their linkage. The platform of
qualitative investigation of aero-elastic critical states in a frequency plain has been significantly expanded
with respect to the stream velocity. Memory effects ruling in aero-elastic DDOF system have been
substantiated and compared in frequency and time domains. The approach presented allows to formulate
more flexible models combining main aspects of both groups keeping the DDOF basis. This approach
can be used for the analysis of practical flow-structure interaction problems. However, teh attention
should be paid to the precise flutter derivatives measurement, especially in the both very low and very
high frequency domains.
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