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Abstract: Strain Hardening Cement-based Composite (SHCC) is a type of High Performance Concrete
(HPC) that was developed to overcome the brittleness of conventional concrete. Even though there is no
significant compressive strength increase compared to conventional concrete, it exhibits superior behavior
in tension. The primary objective of the presented research is to develop a constitutive model that can be
used to simulate structural components with SHCC under different types of loading conditions.
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1. Introduction

Strain Hardening Cement-based Composite (SHCC) is a type of High Performance Concrete (HPC) that
was developed to overcome the brittleness of conventional concrete. Even though there is no significant
compressive strength increase compared to conventional concrete, it exhibits superior behavior in ten-
sion. It has been shown to reach a tensile strain capacity of more than 4% during a pseudo strain harden-
ing phase (Li and Wang, 2001; Boshoff and van Zijl, 2007). This pseudo strain hardening is achieved by
the formation of fine, closely spaced multiple cracks with crack widths normally not exceeding 100µm
(Li and Wang, 2001). These fine cracks, compared to large (larger than 100µm) localized cracks found
in conventional concrete, have the advantage of increased durability. For a further discussion of the
mechanical properties of SHCC, the reader is referred to (Boshoff et al., 2009a,b).

Several scholars have simulated SHCC mechanical behavior with the Finite Element Method (FEM).
Kabele (2000) formulated a model to simulate the mechanical behavior of SHCC using a smeared crack-
ing approach. Despite acknowledging that a discrete cracking model would be best for the final localizing
crack, Kabele decided to use a smeared cracking approach for the localization. This is due to the uncer-
tainty of the position of the final localizing crack. Another model was proposed by Han et al. (2003).
This model was created to simulate the behavior of SHCC under cyclic loading to test the improve-
ment of structural response if SHCC elements are used to dissipate energy during earth-quake loadings.
Computational modeling of SHCC was also performed by Simone et al. (2003) who used an embedded
discontinuity approach for the final material softening. This method would have the same kinematic char-
acterization as one obtained with interface elements for discrete cracking, but does not require remeshing
procedures. Their conclusion was that it did not simulate the experimental results of SHCC satisfactorily
due to the simplicity of the model.

Boshoff (2007) created a simple damage mechanics based model for the tensile behavior of SHCC.
This was implemented numerically using the FEM. Even though numerous shortcomings still exist, the
model showed relatively good results. Remaining issues include an unresolved mesh dependence and
the under prediction of the deformation when analyzing a structure with a strain gradient.

The primary objective of the presented research is to develop a constitutive model that can be used
to simulate structural components with SHCC under different types of loading conditions. In particular,
the constitutive model must be efficient and robust for large-scale simulations while restricted number
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Fig. 1: Coordinates and transformation angle

of material parameters is needed. The proposed model for plane stress is outlined and the results of the
preliminary implementation are shown.

2. Model definition

For the modeling of specific behavior of SHCC in tension, the application of classical constitutive ma-
terial models used for quasi-brittle materials is not straightforward. The proposed numerical model is
based on a rotating crack assumption to capture specific characteristics of SHCC, i.e. the strain hardening
and softening, the multiple cracking and the crack localization. Multiple orthogonal crack patterns are
allowed which is in accordance with the observations presented by Suryanto et al. (2008). A schematic
representation of orthogonal cracking using the rotating crack model is shown using global and local
axes in Fig. 1. A complete description of the rotating crack model can be found in (Rots, 1998).

The presented model is implemented in a commercially available software package, DIANA (BV.,
2008), for a plane stress elements using a coaxial rotating crack model (RCM) with two orthogonal
cracks as described in (Han et al., 2003). This numerical approach is classified as the smeared cracking
approach. When implementing the model into a nonlinear fine element code, the incremental-iterative
procedure based on a strain increment is assumed. Therefore, the strain vector ε = {ε11, ε22, γ12} T
reads

ε(i) = ε(i−1) + ∆ε, (1)

where i stands for an increment number and ∆ε is a strain increment vector. The rotating crack model
evaluates a given strain state and generates the inelastic strain in the principal directions of the strain.
Therefore, it is inevitably required to introduce a transformation tensor ([T]ε , [T]σ) interconnecting
global and a principal strain e = {e1, e2, 0} T or stress s = {s1, s2, 0} T, respectively

e = [T]ε ε, s = [T]σ σ. (2)

Using the standard transformation rule the tensors are

[T]ε =




n211 n212 n11n12
n221 n222 n21n22

2n11n21 2n12n22 n11n22 + n12n21


 ,

n =

[
cosα sinα
− sinα cosα

]
,

(3)

(4)

with the relations between [Tε] and [Tσ]

[T]σ
T = [T]ε

−1 and [T]ε
T = [T]σ

−1. (5)

The rotation angle α can be obtained by means of a standard relation

α = 1/2 arctan [γ12/ (ε11 − ε22)] . (6)
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The incremental stress-strain law (in the crack orientation) reads

∆s = ˜[D]∆e,

˜[D] =




ds1
de1

ds1
de2

0
ds2
de1

ds2
de2

0

0 0 s1−s2
2(e1−e2)


 ,

(7)

(8)

where ˜[D] is the tangent material stiffness matrix. The derivation can be found in (Jirásek and Zimmer-
mann, 1998). The stiffness matrix is transformed to the global coordinates using the standard transfor-
mation rule

[D] = [Tε]
T ˜[D] [Tε] . (9)

2.1. Poisson’s ratio effect and equivalent principal stresses

It has to be mentioned that the rotating crack approach does not automatically include the effect of
Poisson’s ratio as the stress is evaluated on the basis of individual principal strains. In (Han et al.,
2003) the definition of equivalent strain is used to take this effect into account. This approach is reliable
when a model formulation does not permit residual deformations by cyclic loading, i.e. by changing
state (tension to compression and vice versa). However, in the model presented in this study permanent
(residual) deformations are allowed. Therefore, a new approach was employed to treat the effect of
Poisson’s ratio. The effective principal strain (ê) is used to determine the equivalent stress (ŝ) from the
simplified uniaxial stress-strain diagram (see Sec. 2.2.). The effective principal strain is based on the
principal strain (e) which is free of inelastic deformations caused during the stress state change. The
final stresses are consequently evaluated as

{
s1
s2

}
=

1

1− ν12ν21

[
1 ν12
ν21 1

]{
ŝ1
ŝ2

}
,

ν12 = ν0E1/E0, ν21 = ν0E2/E0,

(10)

(11)

where E0 and ν0 stand for Young’s modulus and Poisson’s ratio of the undamaged material respectively.
The parameters E1, E2, ν12 and ν21 represent the characteristics of the damaged material in a given
direction and are defined in Sec. 2.2.. The isotropic elastic material is represented in the state without
cracks (E1 = E2 = E0 , ν12 = ν21 = ν0) and the orthotropic when the crushing or cracking starts

{ŝ1, ŝ2} T =
{
E1e

el
1 , E2e

el
2

}
T. (12)

Stiffness matrix introduced with this approach satisfies the condition of symmetry for orthotropic
materials. Combining Eqs. (10,12) further gives

{
s1
s2

}
=

1

1− ν12ν21

[
E1 ν12E2

ν21E1 E2

]{
eel1
eel2

}
, (13)

where ν12E2 = ν21E1 and superscript ·el represents the elastic part.

2.2. Equivalent stress

The equivalent stress state in principal direction is determined by the stress function ŝt(c) as a function
of the current principal strain and associated history parameters.

The stress function is based on the uniaxial strain-stress diagrams in compression and tension. The
experimental data are idealized to obtain a suitable mathematical representation of this constitutive
model.
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Tension
The material response for virgin loading in tension (Fig. 2(a)) is described for each individual part by

ŝt (ê ≥ εtmax) =





E0ê 0 ≤ ê ≤ εt0
σt0 + (σtp − σt0)

[
−2
(

ê−εt0
εtp−εt0

)3
+ 3

(
ê−εt0
εtp−εt0

)2]
εt0 < ê ≤ εtp

σtp

[
2
(

ê−εtp
εtu−εtp

)3
− 3

(
ê−εtp
εtu−εtp

)2
+ 1

]
εtp < ê < εtu

0 εtu ≤ ê.

(14)

The model parameters are depicted in Fig. 2(a). The elastic part is assumed to be linear whereas the
hardening and the softening sections are defined by means of the Hermit functions.

(a) (b)

Fig. 2: Tensile response: (a) Virgin loading, (b) loading/unloading

The unloading and reloading scheme shown in Fig. 2(b) is based on the experiments presented
by Mechtcherine and Jůn (2007).

ŝt (ê < εtmax) =





E0ê 0 ≤ εtmax ≤ εt0
σ∗tmax

(
ê−εtul

ε∗tmax−εtul

)at
εt0 < εtmax < εtu, ė < 0

σ∗tul + (σtmax − σ∗tul)
ê−ε∗tul

εtmax−ε∗tul
εt0 < εtmax < εtu, ė ≥ 0

0 εtu ≤ εtmax.

(15)

The unloading curve is based on the polynomial function and the reloading is assumed to be linear. The
partial unloading and reloading is incorporated using

ε∗tmax = min (εtmax, εtprl) ,

ε∗tul = max (εtul, εtpul) , (16)

where σ∗tmax, σ
∗
tul are associated stresses and εtmax is the maximum strain experienced in previous steps

with stress σtmax. The evolution of inelastic strain εtul is assumed to be linearly dependent on εtmax
for the elastic and hardening part and linearly dependent on the crack opening for the softening branch
(Eq. (17)). This simplification correlates well with recent, unpublished cyclic tensile results done at
Stellenbosch University, see Fig. 3(a).

εtul =





0 0 ≤ εtmax ≤ εt0
bt (εtmax − εt0) εt0 < εtmax ≤ εtp
min {bt (εtp − εt0) + bt [εtmax − bt (εtp − εt0)− σtmax/Etp] ,
bt (εtp − εt0 + wt/h)} εtp < εtmax,

(17)

where Etp = σtp/ [εtp − bt(εtp − εt0)]. The parameter at governs the unloading trajectory and must be
determined from the experimental tests as well as the material characteristic bt.

To ensure proper energy dissipation during localizing, the crack band approach is used which relates
the strain εtu to the crack opening for the complete force transfer loss (wt) and element size (h), see
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Eq. (18). The crack opening can be considered as a half of the fiber length (Boshoff, 2007). In the
present study the equivalent crack band width is evaluated by projecting the element into the direction
normal to the crack at its initiation (h). This is done for each cracking direction separately. The last term
in Eq. (18) describes the influence of the unloading where more energy is dissipated when the non-linear
law is employed (Fig. 3(b)).

εtu = εtp +
wt
h
− 2

εtp − bt (εtp − εt0)
at + 1

. (18)

(a) (b)

Fig. 3: Tension: (a) Evolution of inelastic strain, (b) comparison of softening branches

As seen in Eq. (17), the damage and cracking strains are mainly driven by a single material parameter,
namely bt. By considering the standard definition of the damage parameter ω

Et = (1− ωt)E0, (19)

where Et denotes the actual elastic modulus, the damage variable can be determined by introducing
Eq. (17) into Eq. (19) as

ωt = 1− Et
E0

= 1− σtmax
(εtmax − εtul)E0

. (20)

The transverse strain ratio in Eq. (11) can be then evaluated as

νij = −ν0 (1− ωt) . (21)

This definition assures the decreasing influence of Poisson’s ratio while the material cracks.

Compression
The virgin compression loading response is shown in Fig. 4(a) and is defined mathematically as

ŝc (ê ≤ εmin) =





E0ê 0 > ê ≥ εc0
σcp − (σcp − σc0)

(
εcp−ê
εcp−εc0

)E0
εcp−εc0
σcp−σc0 εc0 > ê ≥ εcp

σcp

[
2
(

ê−εcp
εcu−εcp

)3
− 3

(
ê−εcp
εcu−εcp

)2
+ 1

]
εcp > ê > εcu

0 εcu ≥ ê.

(22)

The unloading and reloading scheme is depicted in Fig. 4(b) and is based on a similar assumptions as for
tension

ŝc (ê > εcmin) =





E0ê 0 > εcmin ≥ εt0
σ∗cmin

(
ê−εcul

ε∗cmin−εcul

)ac
εc0 > εcmin > εcu, ė > 0

σ∗cul + (σcmin − σ∗cul)
ê−ε∗cul

εcmin−ε∗cul
εc0 > εcmin > εcu, ė ≤ 0

0 εcu ≥ εcmin,

(23)
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(a) (b)

Fig. 4: Compressive response: (a) Virgin loading, (b) loading/unloading

where
ε∗cmin = max (εcmin, εcprl) ,

ε∗cul = min (εcul, εcpul) . (24)

where σ∗cmin, σ
∗
cul are associated stresses and εcmin is the minimum strain reached in previous steps with

stress σcmin. The evolution of inelastic strain is again assumed to be linearly dependent on εcmin and
crushing (Eq. (25)). Suppose that the strain

(
εtestcu

)
for which the force is totally released is determined

from the experimental test and the corresponding localisation band in real material is denoted dc. Next,
with the knowledge of the remaining material parameters, we can define the displacement needed for
releasing correct energy during material softening as wc =

[
εtestcu − bc (εcp − εc0)

]
dc. The inelastic

strain then takes the form

εcul =





0 0 > εcmin ≥ εc0
bc (εcmin − εc0) εc0 > εcmin ≥ εcp
min {bc (εcp − εc0) + bc [εcmin − bc (εcp − εc0)− σcmin/Ecp] ,
bc (εcp − εc0 + wc/h)} εcp > εcmin.

(25)
The material parameters ac and bc have to be determined from experimental test results.

The dissipated energy during the crushing should also be mesh-independent as for tensile cracking.
Therefore, the strain εcu is defined with respect to the mesh size as

εcu = εcp +
wc
h
− 2

εcp − bc (εcp − εc0)
ac + 1

, (26)

where h represents the equivalent band (element size) where the crushing occurs and is determined at its
initiation. The damage parameter is determined in a similar fashion as for tension (Eq. (20)) and reads

ωc = 1− Ec
E0

= 1− σcmin
(εcmin − εcul)E0

. (27)

2.3. Biaxial behavior

To demonstrate the complex behavior of the proposed approach the failure envelope in space of principal
stresses is shown in Fig. 5. The boundaries are influenced by the transverse strain ratio of cracked
and crushed material which is expected when the failure criterion is based on principal strains. This
disadvantage of the presented model can be solved by defining the dependence between tensile and
compressive strength. Nevertheless, the real shape of failure envelope for SHCC will only be included at
a later stage as the biaxial behavior is currently under investigation at Stellenbosch University.

2.4. Cyclic loading

The above described model is adjusted for cyclic loading when the orientation of principle stresses
changes. The residual deformations are assumed to be dependant on the inelastic strain. Therefore,

1560 Engineering Mechanics 2012, #28



Fig. 5: Failure envelope in the principal stress space

a simple linear definition is employed and the permissible closing (opening) strain is evaluated as

εclt(c) = bclt(c)εtul(cul), (28)

where bclt and bclc are material parameters and can therefore be calculated from reverse cyclic loading
tests. The trajectories of reloading after the stress state change are in a good agreement with experimental
results presented in (Billington, 2004).

For the space limitation only tension behavior after stress state change is introduced (Eqs. (29,30)).
The stress evolution for compression can be obtain by substitution of tensile driving parameters for
compressive variables and replacement of the maximum (max) with the minimum (min) value and vice
versa. Note that during the loading after stress state change the old cracks are reopened and the tangent
modulus increases to reach the value of the previously experienced modulus Et.

σ (ė ≥ 0) = σ∗tul + (σ∗∗tmax − σ∗tul)
(

ê− ε∗tul
ε∗∗tmax − ε∗tul

)Et ε
∗∗
tmax−ε

∗
tul

σ∗∗tmax−σ
∗
tul
,

σ (ė < 0) = σ∗tmax

[
ê− ε∗∗tul
σ∗tmax/Et

]at
,

(29)

(30)

where the driving parameter ê is again shifted to correspond with the diagram for a virgin loading and
ε∗∗tmax = max (εt0, εtmax) with associated stress σ∗∗tmax. The experienced modulus is determined as

Et =





E0 εtmax ≤ εt0
σtmax

εtmax − bt (εtmax − εt0)
εtmax > εt0,

(31)

(32)

and inelastic strain ε∗∗tul is assumed to be

ε∗∗tul = min [ε∗tmax − σ∗tmax/Et, bt (εtmax − εt0)] . (33)

To demonstrate the model response, a loading change from tension to compression to tension (A-G)
is shown in Fig. 6(a):

• A-B: initial virgin loading (Eq. (14)),

• B-C: unloading (Eq. (15)),

• C-D: cracks closing and compressive loading,

• D-E: virgin loading (Eq. (22)),
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(a) (b)

Fig. 6: Schematic cyclic behavior

• E-F: unloading (Eq. (23)),

• F-G: cracks reopening and tensile loading (Eq. (29)),

• G-H: virgin loading (Eq. (14)).

Note that if the loading follows the stress state change, the loading path has the tangent equal to the
actual modulus (Eq. (29)), intervals F-K and L-G in Fig. 6(b). The unloading from this stage is defined
in Eq. (30), see interval K-L in Fig. 6(b).

3. Implementation and application

As mentioned in the previous section, the constitutive model is implemented in the commercial available
finite element code DIANA version 9.3 using the “User supplied subroutine” option to demonstrate its
suitability for SHCC. Note that this section is brief demonstration. Therefore, a more wide and deep study
is preparing by the authors and will be presented separately. The Newton-Raphson iterative procedure is
used for the solution of nonlinear equations.

Finite element analyses of the flexural tests is performed to verify the constitutive model analyses.
The three-point bending test is introduced using parameters based on the tensile tests and data presented
by Boshoff (2007). The obtained results are compared with experimental data.

3.1. Model description

The numerical model is based on experimental data obtained over the past 5 years by the Institute of
Structural Engineering based at the Department of Civil Engineering, Stellenbosch University. Due to
the lack of a reverse cyclic loading some parameters are set up using the engineering judgement of the
authors as this will not have a significant influence on the presented results. The available tensile tests
for the same mixture as beams are used to set up the parameters describing tension, see Fig. 7(a). All the
model parameters are listed in Tab. 1. To examine the feasibility of the proposed numerical approach,
two different meshes are used. The flexural test is modelled using four node quadrilateral isoparametric
plane stress element Q8MEM which are based on linear interpolation and Gauss integration. Two by two
integration scheme is set up.

The finite element mesh is refined towards the middle of the beam with the size of the elements in the
expected softening and localization zone 1.33 mm x 1.33 mm and 4.0 x 4.0 mm. The former dimension
of elements in the middle of the beam is chosen in accordance with the theory introduced in (Boshoff,
2007) to deal with the crack spacing. The boundary conditions of the model are shown in Fig. 7(b) as
well as the beam dimensions. The other mesh size is chosen to study the mesh sensitivity.
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(a) (b)

Fig. 7: Three-point bending test: (a) Comparison, (b) setup setup

Tab. 1: Model parameters

General Tension Compression
Param. Value Param. Value Param. Value
E 9200 MPa εt0 2.42 · 10−4 εc0 −4.89 · 10−3

ν 0.35 εtp 3.92 · 10−2 εcp −5.89 · 10−3

σtp 2.79 MPa σcp −50.0 MPa
wt 6.0 mm εcu −2.00 · 10−1

at 3.0 dc 50 mm
bt 0.8 ac 3.0
bclt 0.6 bc 0.8

bclc 0.8

3.2. Results

The presented crack rotating model (RCM) is used to obtain the force-deflection diagrams. These results
are plotted in Fig. 7(a) together with the experimental data and response produced by the model based
on a damage mechanics formulation (DM) by Boshoff (2007). As can be seen, the numerical models
demonstrate good agreement with experimental data in the elastic as well as hardening part. The dis-
crepancy is detected for the softening part. This is probably caused by the fibers alignment close to the
surface which is not taken into account for generally used numerical models and the interested readers
are referred to (Boshoff, 2007). The mesh dependency is observed by comparison of the two different
mesh sizes.

4. Conclusion and future work

In this paper a two-dimensional numerical model for Strain Hardening Cement-based Composites was
introduced. This approach is based on a rotating crack model implemented in the commercially available
software package DIANA. The presented model takes into account:

• strain hardening and softening in tension as well as in compression,

• nonlinear unloading,

• nonlinear loading after stress state change - crack closing,

• the effect of Poisson’s ratio.
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The accuracy of the introduced approach was demonstrated by means of a three-point flexural test. Nev-
ertheless, the model must be further verified before the proposed approach will be used for larger struc-
tural components under different loading conditions.
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Jirásek M and Zimmermann Z (1998). Analysis of Rotating Crack Model, Journal of Engineering
Mechanics 124(8), 842–851.

Kabele P (2000), Assessment of Structural Performance of Engineered Cemetitious Composites by Com-
puter Simulation, PhD thesis, Czech Technical University in Prague. A habilitation thesis.

Li V and Wang S (2001). Tensile Strain-hardening Behavior of PVA-ECC, ACI Materials Journal
98(6), 483–492.

Mechtcherine V and Jůn P (2007). Stress-strain behaviour of strain-hardening cement-based composites
(SHCC) under repeated tensile loading, in Fracture Mechanics of Concrete Structures, pp. 1441–1448.

Rots J (1998), Computational modeling of concrete fracture, PhD thesis, Delft University of Technology.
Ph.D. thesis.

Simone A, Sluys L and Kabele P (2003). Combined continuous/discontinuous failure of cementitious
composites, in Proceedings for EURO-C 2003: Computational Modelling of Concrete Structures,
pp. 133–137.

Suryanto B, Nagai K and Maekawa K (2008). Influence of damage on cracking behavior of ductile
fibre-reinforced cementitious composite, in Proceedings of 8th International Conference on Creep,
Shrinkage and Durability of Concrete and Concrete Structures, pp. 495–500.

1564 Engineering Mechanics 2012, #28


