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Abstract: Finite element method (FEM) and discrete element method (DEM) are leading strategies for
numerical solution of engineering problems of solid phase. Both are applicable in different situations and
sometimes can be beneficially coupled. Coupling of two free open source programs (finite element code
OOFEM and discrete element code YADE, both with C++ core and Python user interface) is presented.
Some of the basic coupling strategies (surface coupling, volume coupling, multi-scale approach and contact
analysis) are explained on patch tests and simple simulations.
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1. Introduction

Numerical simulations are an indispensible part of the current engineering and science development.
For different engineering areas there are different numerical methods used. In solid phase mechanics,
the leading methods are the finite element method (FEM) and the discrete (distinct) element method
(DEM). FEM is rigorously derived from the continuum theory and is being used for the description of
deformable continuous bodies, while DEM describes particulate materials, usually modeled by perfectly
rigid particles and their interactions determined from fictitious overlaps of these rigid particles.

Often an engineering problem can be modeled using only one of the aforementioned methods. A
steel beam would be simulated by FEM, a small assembly of gravel particles by DEM. But what if we
wanted to simulate an impact of the steel bar on the gravel? One possible approach would be to split the
problem into two domains (the steel part modeled by FEM and the gravel part modeled by DEM) and
appropriately couple them.

There are countless software programs for both FEM and DEM. Some of them are commercial
(usually) without possibility to change the code and adjust the behavior to our requirements (combination
with another software for instance). However, there exist programs with open source code, which the
user can modify, possibly for coupling with another programs. In the present article, coupling of FEM
code OOFEM (Patzák & Bittnar, 2001) and DEM code YADE (Šmilauer et al., 2010) is presented.
Both programs have the core written in C++ (providing efficient execution of time consuming routines),
user interface written in Python (modern dynamic object oriented scripting language, providing easy to
use scripting while preserving the C++ efficiency) and extensible object oriented architecture allowing
independent implementation of new features - new material model or new particle shapes for instance.

Basic principles of different coupling strategies (surface, volume, multiscale and contact coupling)
are explained in section 2, implementation issues are covered in section 3 and specific examples for each
coupling strategy are presented in section 4. Python scripts controlling these examples are for illustration
placed in Appendix A.

2. Theory

In this section, firstly the two numerical methods are quickly reviewed for the simplest case of small
strain/displacement linear elasticity (to establish consistent notation and to help readers familiar with
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one method to understand the other one). Then the basic principles of the chosen coupling strategies are
explained.

2.1. Finite element method

discretization

Fig. 1: Simplified illustration of FEM discretization

The continuous (static) linear elasticity solves the boundary value problem

ε = ∇symu x ∈ Ω (1)

σ = 4D : ε x ∈ Ω (2)

∇ · σ + b = 0 x ∈ Ω (3)

u = u x ∈ Γu (4)

n · σ = t x ∈ Γt (5)

wherex = vector of Cartesian coordinates,u=u(x) = displacement vector,ε= ε(x) = strain tensor,
σ = σ(x) = stress tensor,4D = 4D(x) = fourth-order stiffness tensor,b = b(x) = body forces,
t=t(x) = surface tractions,Ω = domain of the problem,Γu = boundary of the domain with prescribed
displacements,Γt = boundary of the domain with prescribed tractions andn = n(x) = outer unit
normal vector of the boundary.∇ is the vector of spatial partial derivatives,· is contraction and: is
double contraction (tensor operations). Overbars indicate prescribed values.

Combining geometric equations (1), constitutive equations (2) and equilibrium (Cauchy) equations
(3) yields Lamé equations

∇ ·
[
4D : (∇u)

]
+ b = 0, (6)

which describe the elasticity problem in the strong sense.

The basic idea of FEM is to discretize the domainΩ into finite elements. On each elemente, the
displacement fieldue(x) is approximated as a combination of nodal displacement values{d}e. From
the element geometry and material parameters, the element stiffness matrix[K]e can be constructed,
providing the relationship between the nodal displacements {d}e and nodal internal forces{f}e (7).
Approximating the load by nodal forces, the global system ofequations

[K]e{d}e = {f}e → [K]g{d}g = {f}g (7)

is assembled and unknown nodal displacements are solved fordefined boundary conditions. Equation
(7) can be derived from the virtual work principle and describes the elasticity problem in the weak sense.

2.2. Discrete element method

Consider an assembly of rigid particles. The contact (bond,interaction etc.) c between particles is
created either initially in the beginning of the simulationor when the particles overlap. The contact (see
equations (8-9) and figure 2) can be described by a branch vector lc (connecting the centers of linked
particles) with normalnc = lc/||lc|| . The (linearized) relative contact displacementuc can be expressed
in terms of particle displacementxp and rotationϕp and decomposed into the normal componentucN
and the shear componentuc

T . Constitutive (linear elastic) contact law is also expressed (independently)
in the normal and shear directions in terms of the normal and shear forcesf c

N andf cT and normal and
shear contact stiffnesseskcN andkcT . The total contact forcef c is composed from normal and shear
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Fig. 2: Simplified illustration of the contact displacementand contact forces and their decompositions

components. The contact force is considered to act at the contact point (in the middle between particle
centers for example), and so its shear component also causesa moment on both particles.

ucN = uc · nc, uc = ucNnc + uc
T (8)

f c
N = kcNucN , f cT = kcTu

c
T , f c = f c

Nnc + f cT (9)

For each particlep, the forces are then summed from all particles contacts and the Newton’s equations
of motion

fp =
∑

c∈p
f c, üp =

fp

mp
(10)

are solved using Verlet explicit time integration scheme.mp is the mass of particlep andüp its acceler-
ation. The summation and integration of the equation of motion is also defined for moments and angular
accelerations. For more details about time integration as well as DEM in general see (Šmilauer et al.,
2010) or (Kuhl et. al, 2001).

2.3. Surface coupling

ẋp
fpDEM ∝ ẍp

contact

f eFEM

ẋp

1) 2) 3)

Fig. 3: Illustration of FEM/DEM surface coupling

The so-called surface coupling (Fakhimi, 2009; Nakashima &Oida, 2004; Oñate & Rojek, 2004;
Villard et al., 2009) is probably the most straightforward coupling method. The principle is to split the
whole problem into two non-overlapping domains, one modeled by FEM and the other by DEM (as
already illustrated on the steel beam – gravel example in theintroduction). As long as there is no overlap
between the two domains, nothing special happens - both methods are applied independently.

If a contact between a finite element and a DEM particle is detected, the new force becomes acting on
the DEM particle (causing its acceleration). The same force(with the same magnitude and the opposite
direction) of course acts also on the FEM element and is processed as a load boundary condition, see
figure 3.
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In the current OOFEM/YADE implementation, the FEM boundary(surface) elements are copied
into DEM part as special particles. This approach allows us to exploit efficient YADE contact detection
algorithms. The resulting DEM force and moment acting on surface element are in FEM part transfered
into nodal forces and further assumed as external load.

2.4. Volume coupling

FEM contribution DEM contribution
trans. zone

(a) (b)

Fig. 4: Illustration of ”master/slave” (a) and ”Arlequin” (b) FEM/DEM volume coupling

Volume coupling is similar to the surface coupling. The difference is that the two subdomains overlap
each other. The possible usage of this approach could be a model of concrete beam subjected to an impact
load (blast for example). The whole beam would be modeled by FEM and only a small volume of the
concrete (the volume to be fragmented and crushed) would be modeled by DEM.

There are two basic strategies how to model transition between FEM and DEM domains. The first
one, ”direct” or ”master/slave” method, (Azvedo & Lemos, 2004) considers DEM particles overlapping
with FEM as direct slaves of the FEM mesh (using standard ”master/slave” or ”hanging nodes” ap-
proach). The second one, the ”Arlequin” method (Rousseau etal., 2009; Wellmann & Wriggers, 2012),
considers a transition bridging zone, where the total response is superposed from contributions of the
two models and is interpolated between both domains.

2.5. Multiscale coupling

Macro (FEM)

strainstress
stiffness

Micro (DEM)

solving BVP

Fig. 5: Illustration of multiscale coupling according to (Geers et. al, 2010) applied to FEM/DEM

The idea of multiscale simulations is to model the problem onthe large (macro) scale using infor-
mation from a lower (micro) scale. In the current context, the (first order) homogenization (Geers et. al,
2010) is presented. Geometric information (strain) from macro scale (Gauss points of FEM mesh) is
transfered to the micro scale (representative volume element - RVE - modeled by DEM), see figure 5.
On the micro scale, the boundary value problem (BVP) governed by the transfered prescribed strain is
solved using periodic boundary conditions (Stránský & Jirásek, 2010). The output of the micro-scale
problem are the stress tensor and the constitutive characteristics (stiffness tensor), which are transfered
back to the macro-scale problem.
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As an example of this approach, consider a model of a large sample of sand. On macro scale, sand
is usually considered as a continuous material. DEM modeling of a large sand sample with individual
grains modeled by individual particles would not be feasible. According to these two facts, the macro
scale problem is modeled by FEM. However, the particular nature of sand is preserved in the microscale
RVE simulations, which provides the FEM part with stress andstiffness. Thus we do not need any
explicit expression of the material law on the FEM scale (it is determined from the actual micro RVE
response).

The stress and stiffness can be evaluated either analytically or numerically. The analytical formulas
(Kuhl et. al, 2001) are inspired by the microplane theory andare derived from Voigt’s hypothesis. It
assumes that the strainε is distributed uniformly in the RVE and, consequently, the relative displacement
uc of each contactc can be expressed and decomposed in the form (see (Kuhl et. al,2001) and equations
(8-9) for more details):

uc = ε · lc = ||lc|| ε · nc = ucNnc + uc
T (11)

ucN = uc · nc = (||lc|| ε · nc) · nc = ||lc|| (nc ⊗ nc) : ε = ||lc||Nc : ε (12)

uc
T = uc−ucNnc = ||lc|| ε ·nc−||lc|| ε : (nc⊗nc)nc = ||lc|| ε : (Isym ·n−n⊗n⊗n) = ||lc||Tc : ε (13)

Nc=nc⊗nc andTc=Isym·nc−nc⊗nc⊗nc are auxiliary projection tensors andIsym = 1
2 [δilδjk+δikδjl]

is the fourth order symmetric identity tensor. The equivalence of macroscopic (M ) and microscopic (m)
virtual work

σ : δε = δWM = δWm =
1

V

∑

c∈V
f c · δuc =

1

V

∑

c∈V
f c · δε · lc = 1

V

∑

c∈V
[f c ⊗ lc] : δε (14)

yields the expression for the stress tensor (with substitution of equations (8) and (9))

σ =
1

V

∑

c∈V
[f c ⊗ lc]sym =

1

V

∑

c∈V
||lc|| (Ncf c

N + [f cT ⊗ nc]sym). (15)

Substituting equations (9), (12) and (13) into (15)

σ =
1

V

∑

c∈V
||lc|| (NckcNucN + [nc ⊗ kcTu

c
T ]

sym) =

=
1

V

∑

c∈V
||lc|| (NckcN ||lc||Nc : ε+ [nc ⊗ kcT ||lc||Tc : ε]sym) = (16)

=
1

V

∑

c∈V
||lc|| 2(kcNNc ⊗Nc + kcT [n

c ⊗Tc]sym) : ε

and comparing (16) with (2) yields the expression for the stiffness tensor

4D =
1

V

∑

c∈V
||lc|| 2(kcNNc ⊗Nc + kcT [n

c ⊗Tc]sym)

Dijkl =
1

V

∑

c∈V
||lc|| 2

[
(kcN − kcT )n

c
in

c
jn

c
kn

c
l + kcT

1

4

(
nc
in

c
l δjk + nc

in
c
kδjl + nc

jn
c
l δik + nc

jn
c
kδil

)]
.

(17)

This estimation of the stiffness tensor is derived from the kinematic constraint, thus it is an upper
bound of the real one. If the real strain state differs too much from the assumed uniform state (strain
localization for instance), the analytical stiffness estimation is no more valid and the stiffness has to be
computed numerically. The aspect of strain localization can be in same cases captured by the imple-
mented periodic boundary conditions, see (Šmilauer et al., 2010) and (Stránský & Jirásek, 2010), but it
will be among other aspects (second order homogenization for instance) subjected to further analysis and
development.
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2.6. Contact analysis

The idea of contact analysis (Frenning, 2009) is very simpleand opposite to the multiscale approach.
The material on the large scale is considered to be of a particulate nature and is modeled by particles
using DEM. Each such particle is further modeled by FEM.

There is no strict border between the cases when the solutioncan be considered as contact FEM
analysis and when it is already DEM. For only a few particles we would probably use the former one, but
when the number of particles is large, the DEM modeling (withits efficient contact detection algorithms)
would be more convenient. This strategy can be actually considered as full FEM, only the contact
detection is ”borrowed” from the DEM program.

DEM FEM

Fig. 6: Illustration of multimethod FEM/DEM contact analysis

3. Implementation

The current implementation serves only for testing of the methods and functionality, therefore not all
features are in public versions of OOFEM and YADE yet. Since this paper is about open source coupling,
the changes will be (after further testing and bug-fixing) ofcourse merged to public versions and will be
available for any potential user/developer.

From the point of view of Python, all important functionality is concentrated into thefakemupif
module, which provides several classes derived from the base FemDemCoupler class. Each such
class has itsstep method, which is the only needed additional command in comparison with non-
coupled simulations (see the example scripts in the following sections). When the testing is finished,
the functionality (probably with some syntax and internal code modifications, but with same high-level
simplicity) will be implemented into theMuPIF project (Patzák, 2011) to enable coupling with other
programs or other physical models (heat transfer for instance).

Python
MuPIF

OOFEM API YADE API

OOFEM YADE
OOFEM YADE

(module fakemupif)

OOFEM
Python

YADE
Python

interface interface OOFEM
Python

YADE
Python

interface interface

(a) (b)

Fig. 7: Current (testing) (a) and planned (b) implementation

4. Examples

In this section, one specific simple example for each discussed coupling strategy is presented.
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(a) (b) (c)

Fig. 8: Results of surface coupling - soil-tire contact:
simulation setup (a), detail of contact (b) and resulting vertical normal stress in FEM domain (c)

4.1. Surface coupling: soil-tire contact

Simulation of the soil-tire contact, inspired by (Nakashima & Oida, 2004), is presented here. The tire
is modeled by FEM as a linear elastic material, the soil is modeled by DEM as spherical particles. Of
course, in a real simulation we could use a more complicated soil grain geometry, a more advanced (than
just linear elastic) material model for the tire and so on, but for an illustrating and testing example the
present assumptions are sufficient. See figure 8 and codes 1 and 5.

4.2. Volume coupling: three point bending

Fig. 9: Results of three point bending:
initial state (a), undeformed and deformed final state (b) and normal stress (c)

In this example, a simply supported beam was simulated. The whole beam body was simulated by
FEM, only the part with maximal tensile normal stress was simulated by DEM. The vertical displacement
of the middle cross section was prescribed.

Again, the elastic solution is nothing special here, but instead of linear elastic particles we could
use a kind of material model for fracture description (Azvedo & Lemos, 2004), thus the expected crack
initiation and propagation in the middle cross section would be modeled with the help of discrete models.
See figure 9 and codes 2 and 6.

4.3. Multiscale coupling: uniaxial strain

Uniaxial strain (oedometric test) of a sample consisting oftwo different (linear elastic) materials (with
stiffness ratio1/2) is simulated in this example. The macro-scale problem is modeled by two brick
elements. Each FEM element has eight integration points. For each integration point, a DEM micro-
scale RVE simulation is performed, in which the FEM prescribed strain is imposed. The resulting stress
and stiffness are transfered back to the macro-scale FEM simulation.

In figure 10, magnified results are plotted. In each material,one micro RVE result is displayed (all
RVEs in the same material, due to the simulation setup, correspond to each other). The results of linear
elastic behavior are not extremely spectacular indeed, butusing nonlinear behavior of RVEs (resulting
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Fig. 10: Results of multiscale uniaxial strain test

in higher stiffness when more inter-particle contact occurfor instance) could be very useful for certain
applications.

See figure 10 and codes 3 and 7.

4.4. Contact analysis: cantilever shock analysis

In this example, the simulation of a cantilever shock is presented. The shock is caused by the fall of an
impactor – another beam in our example – on the end of the cantilever. Both cantilever and the falling
beam are modeled by FEM, only a detection algorithm is borrowed from DEM. This contact detection
between particles of FEM elements shapes (tetrahedra or bricks) is a typical example of the code, which
is not public yet and needs more testing to be committed to public version. See figure 11 and codes 4
and 8.

Fig. 11: Results of cantilever shock analysis – different stages of impact

5. Conclusions

The basic principles of the most popular FEM/DEM coupling strategies (surface, volume, multiscale and
contact coupling) were presented, together with specific examples and corresponding Python scripts. All
methods can be arbitrarily combined with each other or with different methods/programs (which uses
Python user interface).

As an example, consider a dynamic soil compaction. The compacted soil would be definitely mod-
eled by DEM, the compactor by FEM (here we have surface coupling) and the rest of the soil domain
by FEM. The soil DEM / soil FEM interface would probably be of avolume coupling kind. Of course,
the FEM soil could be modeled using the multiscale approach,and we could go in coupling further and
further.
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This example was just to show the variety of possible coupling combinations and that there are a lot
of real world problems, where such coupled methods could be useful. Together with the simplicity of
creating, modifying and running such simulations and extensibility of the used programs (due to the open
source character of the code) it makes this approach attractive for a variety of engineering problems.

Future work on this topic will address (among others) secondorder DEM homogenization, adjust-
ment of DEM periodic boundary conditions for arbitrary localization analysis, implementation and test-
ing of Arlequin volume coupling method, implementation of contact detection algorithms of FEM ele-
ment shaped particles and implementation of testingfakemupif interface intoMuPIF framework.

Acknowledgments

Financial support of the Czech Technical University in Prague under project SGS12/027/OHK1/1T/11 is
gratefully acknowledged.

References

Azvedo, N. M. & Lemos, L. V. (2006) Hybrid discrete element/finite element method for fracture analysis.Com-
puter Methods in Applied Mechanics and Engineering, 195, pp. 4579–4593.

Fakhimi, A. (2009) A hybrid discretefinite element model fornumerical simulation of geomaterials.Computers
and Geotechnics, 36, pp. 386–395.

Frenning, D. (2008) An efficient finite/discrete element procedure for simulating compression of 3D particle as-
semblies.Computer Methods in Applied Mechanics and Engineering, 197, pp. 4266–4272.

Geers, M. G. D., Kouznetsova, Brekelmans, W. A. M. (2010) Multi-scale computational homogenization: Trends
and challenges.Journal of Computational and Applied Mathematics, 234, pp. 2175–2182.

Kuhl, E., DAddetta, G. A., Leukart, M. and Ramm, E. (2001) Microplane modelling and particle modelling of
cohesive-frictional materials. In:Continuous and Discontinuous Modelling of Cohesive-Frictional Materials
(P. A. Veemer et al. eds). Springer, Berlin, pp. 31–46

Nakashima, H. & Oida, A. (2004) Algorithm and implementation of soiltire contact analysis code based on dy-
namic FEDE method.Journal of Terramechanics, 41, pp. 127–137.
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Appendix A. Example scripts and input files

Python scripts controlling examples in section 4 are presented in this section.

Currently, OOFEM simulations use input text files, while YADE constructs the simulation directly
in a Python script. Therefore the OOFEM input files (or a significant parts of them) are followed by the
actual Python scripts.

Since thefakemupif module will be changed and adjusted toMuPIF requirements, the actual
codefakemupif is not presented. However, the simplicity ofcoupler.step() line (from the user
point of view representing the entire coupling process) should be preserved.

test_surface.oofem.out
surface coupling test - tire-soil contact
LinearStatic nsteps 1000 nmodules 1
vtk 1 tstep_step 20 domain_all vars 2 1 4 primvars 1 1
domain 3d
OutputManager tstep_all dofman_all element_all
ndofman 64 nelem 192 ncrosssect 1 nmat 1 nbc 2 nic 0 nltf 2
node 1 coords 3 -3.000000e-01 0.000000e+00 -1.000000e-01 bc 3 0 0 0
...
node 34 coords 3 0.000000e+00 0.000000e+00 -1.000000e-01 bc 3 1 2 1
...
node 64 coords 3 -1.307587e-01 1.822355e-01 -4.467372e-02 bc 3 0 0 0
ltrspace 1 nodes 4 32 40 42 45 crosssect 1 mat 1
...
ltrspace 192 nodes 4 38 32 55 46 crosssect 1 mat 1
SimpleCS 1 thick 1.0 width 1.0
IsoLE 1 d 0. E 100e9 n 0.4 talpha 0.0
BoundaryCondition 1 loadTimeFunction 1 prescribedvalue 0.0
BoundaryCondition 2 loadTimeFunction 2 prescribedvalue 1.0
ConstantFunction 1 f(t) 1.0
PiecewiseLinFunction 2 npoints 3 t 3 0 500 1000 f(t) 3 0 0.01 0

Code 1: testsurface.oofem.in

test_volume.oofem.out
volume coupling test - hanging nodes - three point bending
NonLinearStatic nsteps 50 nmodules 1
vtk 1 tstep_step 1 domain_all vars 2 1 4 primvars 1 1
domain 3d
OutputManager tstep_all dofman_all element_all
ndofman 2478 nelem 1764 ncrosssect 1 nmat 1 nbc 2 nic 0 nltf 1
node 1 coords 3 0.000000e+00 0.000000e+00 0.000000e+00 bc 3 0 1 0
...
node 2478 coords 3 6.000000e+00 3.000000e-01 4.000000e-01 bc 3 0 1 1
lspace 1 nodes 8 2 9 58 51 1 8 57 50 crosssect 1 mat 1
...
lspace 1800 nodes 8 2422 ... 2470 crosssect 1 mat 1
SimpleCS 1 thick 1.0 width 1.0
IsoLE 1 d 0. E 40e9 n 0.2 talpha 0.0
BoundaryCondition 1 loadTimeFunction 1 prescribedvalue 0.0
BoundaryCondition 2 loadTimeFunction 1 prescribedvalue 1e-2
PiecewiseLinFunction 1 npoints 2 t 2 0 50 f(t) 2 0. 1.

Code 2: testvolume.oofem.in
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test_multi.oofem.out
multiscale coupling test
NonLinearStatic nsteps 50 nmodules 1
vtk 1 tstep_step 1 domain_all vars 2 1 4 primvars 1 1
domain 3d
OutputManager tstep_all dofman_all element_all
ndofman 12 nelem 2 ncrosssect 1 nmat 2 nbc 2 nic 0 nltf 2
node 1 coords 3 0.0 0.0 0.1 bc 3 1 1 1
...
lspace 1 nodes 8 1 2 3 4 5 6 7 8 crosssect 1 mat 1
lspace 2 nodes 8 4 3 9 10 8 7 11 12 crosssect 1 mat 2
SimpleCS 1 thick 1.0 width 1.0
MultiScaleSMMat 1 d 0. E 40e6 n 0.2 talpha 0.0
MultiScaleSMMat 2 d 0. E 80e6 n 0.2 talpha 0.0
BoundaryCondition 1 loadTimeFunction 2 prescribedvalue 0.0
BoundaryCondition 2 loadTimeFunction 2 prescribedvalue -1e-2
PiecewiseLinFunction 1 npoints 2 t 2 0 50 f(t) 2 0. 1.
ConstantFunction 2 f(t) 1.

Code 3: testmulti.oofem.in

test_contact.oofem.out
contact coupling test - cantilever inpact
DEIDynamic nsteps 12000 nmodules 1 dumpcoef 0 deltaT 1e-4
vtk 1 tstep_step 30 domain_all vars 2 1 4 primvars 1 1
domain 3d
OutputManager tstep_all dofman_all element_all
ndofman 90 nelem 32 ncrosssect 1 nmat 1 nbc 2 nic 0 nltf 1
node 1 coords 3 0.000000e+00 0.000000e+00 0.000000e+00 bc 3 1 1 1
...
node 90 coords 3 1.723500e+00 1.744000e+00 -1.000000e-01
lspace 1 nodes 8 2 5 14 11 1 4 13 10 crosssect 1 mat 1 bodyloads 1 2
...
lspace 32 nodes 8 72 75 90 87 71 74 89 86 crosssect 1 mat 1 bodyloads 1 2
SimpleCS 1 thick 1.0 width 1
IsoLE 1 d 1000. E 1e8 n 0.2 talpha 0.0
BoundaryCondition 1 loadTimeFunction 1 prescribedvalue 0.0
deadweight 2 loadTimeFunction 1 components 3 0 0 10
ConstantFunction 1 f(t) 1.

Code 4: testcontact.oofem.in
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# example script for surface coupling - soil-tire contact
# first import required modules
import fakemupif
from fakemupif import oofem,yade

nSteps = 1000
output = 50
# then instanciate FEM ...
oofemFile = ’test_surface.oofem.in’
fem = fakemupif.instanciateOofemProblem(oofemFile)
dem = yade.Omega()

# ... as well as DEM problem
dem.materials.append(fakemupif.defaultMat)
c1,c2 = (0,-.015,-.008), (.03,-.004,.017)
c1,c2 = (-.15,-.4,-.15), (.15,-.3,.15)
rect = yade.pack.inAlignedBox(c1,c2)
rad = .005
sphs = yade.pack.randomDensePack(rect,rad,spheresInCell=1000)
dem.bodies.append([sph for sph in sphs])

# DEM BCs
bcw = 3*rad
for b in dem.bodies:

p = b.state.pos
if not (p[0]<c1[0]+bcw or p[0]>c2[0]-bcw): continue
if not (p[1]<c1[1]+bcw or p[2]<c1[2]+bcw or p[2]>c2[2]-bcw): continue
b.state.blockedDOFs = ’xyzXYZ’

#
coupler = fakemupif.SurfaceFemDemCoupler(fem,dem,oofemFile)
dem.bodies.append([facet for facet in coupler.facets])
#

dem.engines=[
yade.ForceResetter(),
yade.InsertionSortCollider([

yade.Bo1_Sphere_Aabb(),
yade.Bo1_Facet_Aabb()]),

yade.InteractionLoop(
[yade.Ig2_Sphere_Sphere_Dem3DofGeom(),

yade.Ig2_Facet_Sphere_Dem3DofGeom()],
[yade.Ip2_CpmMat_CpmMat_CpmPhys()],
[yade.Law2_Dem3DofGeom_CpmPhys_Cpm()]

),
yade.NewtonIntegrator(),
yade.PyRunner(command=’vtk.exportSpheres(); vtk.exportFacets()’,\

iterPeriod=max(1,nSteps/output)),
]
dem.dt = yade.utils.PWaveTimeStep()/2.

# Yade vtk export
import yade.export
vtk = yade.export.VTKExporter(’test_surface.yade’,startSnap=1)

# run
for i in xrange(nSteps):

coupler.step()

# exit
print ’Finished!’
fem.terminateAnalysis()
dem.exitNoBacktrace()

Code 5: controlling script for soil-tire contact simulation
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# example script for volume coupling - three point ending
# first import required modules
import fakemupif
from fakemupif import oofem,yade

# then instanciate FEM ...
oofemFile = ’test_volume.oofem.in’
fem = fakemupif.instanciateOofemProblem(oofemFile)

# ... as well as DEM problem
dem = yade.Omega()
dem.materials.append(fakemupif.defaultMat)
rect = yade.pack.inAlignedBox((2.8,0.0,0.12),(3.2,0.3,0.4))
sphs = yade.pack.randomDensePack(rect,0.02,spheresInCell=1000)
dem.bodies.append(sphs)

#
coupler = fakemupif.VolumeFemDemCoupler(fem,dem,oofemFile)
#

dem.dt = .5*yade.utils.SpherePWaveTimeStep(.02,1000,25e9)
dem.engines=[

yade.ForceResetter(),
yade.InsertionSortCollider([

yade.Bo1_Sphere_Aabb(aabbEnlargeFactor=1.5,label=’is2aabb’)
]),

yade.InteractionLoop(
[yade.Ig2_Sphere_Sphere_Dem3DofGeom(distFactor=1.5,label=’ss2d3dg’)],
[yade.Ip2_CpmMat_CpmMat_CpmPhys()],
[yade.Law2_Dem3DofGeom_CpmPhys_Cpm()]),

yade.NewtonIntegrator(damping=.3),
]
dem.step()
is2aabb.aabbEnlargeFactor = ss2d3dg.distFactor = -1.

# Yade vtk export
import yade.export
vtk = yade.export.VTKExporter(’test_volume.yade’,startSnap=1)

# run 50 steps of simulation and save results
for i in xrange(50):

coupler.step()
vtk.exportSpheres(what=[(’dspl’,’b.state.displ()’)])

# exit
print ’Finished!’
fem.terminateAnalysis()
dem.exitNoBacktrace()

Code 6: controlling script for three point bending volume coupling example
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# example script for multiscale coupling - uniaxial strain
# first import required modules
import fakemupif
from fakemupif import oofem,yade

# then instanciate FEM ...
oofemFile = ’test_multi.oofem.in’
fem = fakemupif.instanciateOofemProblem(oofemFile)

# ... as well as DEM problem
dem = yade.Omega()
demMat1 = dem.materials.append(fakemupif.defaultMat)
demMat2 = dem.materials.append(fakemupif.defaultMat2)

#
coupler = fakemupif.MultiScaleFemDemCoupler(fem,dem,oofemFile)
#

# Yade vtk export
import yade.export
vtks = {}
for gp in coupler.gps:

newScene = dem.addScene()
coupler.scenes.append(newScene)
dem.switchToScene(newScene)
dem.dt = .5*yade.utils.SpherePWaveTimeStep(.001,1000,25e9)
dem.bodies.append(yade.pack.randomPeriPack(.001,.02))
dem.engines=[

yade.ForceResetter(),
yade.InsertionSortCollider([

yade.Bo1_Sphere_Aabb(aabbEnlargeFactor=1.5,label=’is2aabb’)
]),

yade.InteractionLoop(
[yade.Ig2_Sphere_Sphere_Dem3DofGeom(distFactor=1.5,label=’ss2d3dg’)],
[yade.Ip2_CpmMat_CpmMat_CpmPhys()],
[yade.Law2_Dem3DofGeom_CpmPhys_Cpm()]),

yade.NewtonIntegrator(damping=.3),
]
dem.step()
is2aabb.aabbEnlargeFactor = ss2d3dg.distFactor = -1.
vtks[newScene] = yade.export.VTKExporter(’test_multi.yade%d’%newScene)

# run 50 steps of simulation and save results
for i in xrange(50):

coupler.step()
for scene in coupler.scenes:

vtks[scene].exportSpheres(what=[(’dspl’,’b.state.displ()’)])

# exit
print ’Finished!’
fem.terminateAnalysis()
dem.exitNoBacktrace()

Code 7: controlling script for multiscale uniaxial strain simulation
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# example script for contact coupling - cantilever impact
# first import required modules
import fakemupif
from fakemupif import oofem,yade

nSteps = 12000
# then instanciate FEM ...
oofemFile = ’test_contact.oofem.in’
fem = fakemupif.instanciateOofemProblem(oofemFile)

# ... as well as DEM problem
dem = yade.Omega()
dem.materials.append(fakemupif.defaultMat)

#
coupler = fakemupif.ContactFemDemCoupler(fem,dem,oofemFile)
#

dem.bodies.append(coupler.demImages)
dem.engines=[

yade.ForceResetter(),
yade.InsertionSortCollider([

yade.Bo1_Facet_Aabb()
]),

yade.InteractionLoop(
[yade.Ig2_Facet_Facet_Dem3DofGeom()],
[yade.Ip2_CpmMat_CpmMat_CpmPhys()],
[yade.Law2_Dem3DofGeom_CpmPhys_Cpm()]),

]

# run
for i in xrange(nSteps):

coupler.step()

# exit
print ’Finished!’
fem.terminateAnalysis()
dem.exitNoBacktrace()

Code 8: controlling script for cantilever shock analysis
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