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OPEN SOURCE FEM-DEM COUPLING

J. Stransky*, M. Jirasek *

Abstract: Finite element method (FEM) and discrete element method (DEM) are leading strategies for
numerical solution of engineering problems of solid phase. Both are applicable in different situations and
sometimes can be beneficially coupled. Coupling of two free open source programs (finite element code
OOFEM and discrete element code YADE, both with C++ core and Python user interface) is presented.
Some of the basic coupling strategies (surface coupling, volume coupling, multi-scale approach and contact
analysis) are explained on patch tests and simple simulations.
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1. Introduction

Numerical simulations are an indispensible part of the current engineering and science development.
For different engineering areas there are different numerical methods used. In solid phase mechanics,
the leading methods are the finite element method (FEM) and the discrete (distinct) element method
(DEM). FEM is rigorously derived from the continuum theory and is being used for the description of
deformable continuous bodies, while DEM describes particulate materials, usually modeled by perfectly
rigid particles and their interactions determined from fictitious overlaps of these rigid particles.

Often an engineering problem can be modeled using only one of the aforementioned methods. A
steel beam would be simulated by FEM, a small assembly of gravel particles by DEM. But what if we
wanted to simulate an impact of the steel bar on the gravel? One possible approach would be to split the
problem into two domains (the steel part modeled by FEM and the gravel part modeled by DEM) and
appropriately couple them.

There are countless software programs for both FEM and DEM. Some of them are commercial
(usually) without possibility to change the code and adjust the behavior to our requirements (combination
with another software for instance). However, there exist programs with open source code, which the
user can modify, possibly for coupling with another programs. In the present article, coupling of FEM
code OOFEM (Patzak & Bittnar, 2001) and DEM code YADE (Smilauer et al., 2010) is presented.
Both programs have the core written in C++ (providing efficient execution of time consuming routines),
user interface written in Python (modern dynamic object oriented scripting language, providing easy to
use scripting while preserving the C++ efficiency) and extensible object oriented architecture allowing
independent implementation of new features - new material model or new particle shapes for instance.

Basic principles of different coupling strategies (surface, volume, multiscale and contact coupling)
are explained in section 2, implementation issues are covered in section 3 and specific examples for each
coupling strategy are presented in section 4. Python scripts controlling these examples are for illustration
placed in Appendix A.

2. Theory

In this section, firstly the two numerical methods are quickly reviewed for the simplest case of small
strain/displacement linear elasticity (to establish consistent notation and to help readers familiar with
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one method to understand the other one). Then the basiggesof the chosen coupling strategies are
explained.

2.1. Finite element method

discretization
>

Fig. 1. Simplified illustration of FEM discretization

The continuous (static) linear elasticity solves the bamdalue problem

e = V¥ x €2 D
c="D:e X € (2)
V-o+b=0 x €02 )
u=1u xely (4)
n-o=t x €T}y (5)

wherex = vector of Cartesian coordinates—= u(x) = displacement vectog = e(x) = strain tensor,
o = o(x) = stress tensoriD = “D(x) = fourth-order stiffness tensoh = b(x) = body forces,
t=t(x) = surface tractions)) = domain of the problent;’,, = boundary of the domain with prescribed
displacementsI'; = boundary of the domain with prescribed tractions ane- n(x) = outer unit
normal vector of the boundaryV is the vector of spatial partial derivativesis contraction and is
double contraction (tensor operations). Overbars indipagscribed values.

Combining geometric equations (1), constitutive equatif?) and equilibrium (Cauchy) equations
(3) yields Lamé equations
V-['D:(Vu]+b=0, (6)

which describe the elasticity problem in the strong sense.

The basic idea of FEM is to discretize the dom&innto finite elements. On each elementthe
displacement fieldi®(x) is approximated as a combination of nodal displacementesgdld}©. From
the element geometry and material parameters, the eleni#inéss matrix[K]¢ can be constructed,
providing the relationship between the nodal displacemédt® and nodal internal force$f}© (7).
Approximating the load by nodal forces, the global systeragpfations

[K{d}* ={f}* — [K]/{d}? ={f}’ @)

is assembled and unknown nodal displacements are solvatkfimed boundary conditions. Equation
(7) can be derived from the virtual work principle and ddsesithe elasticity problem in the weak sense.

2.2. Discrete element method

Consider an assembly of rigid particles. The contact (bamgraction etc.) ¢ between particles is
created either initially in the beginning of the simulatimnwhen the particles overlap. The contact (see
equations (8-9) and figure 2) can be described by a brancbhnddtconnecting the centers of linked
particles) with normah® = 1°/|1¢| . The (linearized) relative contact displacemafittan be expressed
in terms of particle displacemenf’ and rotatiorny?” and decomposed into the normal componeit
and the shear componea§.. Constitutive (linear elastic) contact law is also expegs@ndependently)

in the normal and shear directions in terms of the normal &edrsforcesf, andff. and normal and
shear contact stiffnessés; and k7. The total contact forc€® is composed from normal and shear
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Fig. 2: Simplified illustration of the contact displacemanid contact forces and their decompositions

components. The contact force is considered to act at thactopoint (in the middle between particle
centers for example), and so its shear component also causement on both particles.

ufy = u’-n°, u’ = uyn® + ug (8)
[ = kivul, f7 = kpur, £ = fin® + 17 9)

For each patrticle, the forces are then summed from all particles contactstanNéwton’s equations
of motion e
=3 "f, ir=— (10)

mpP
cep

are solved using Verlet explicit time integration schemé.is the mass of particlg andi? its acceler-
ation. The summation and integration of the equation of amois also defined for moments and angular
accelerations. For more details about time integration elsag DEM in general seesfmilauer et al.,
2010) or (Kuhl et. al, 2001).

2.3. Surface coupling

. £ i o X7
@

contact
1) 2) 3)

Fig. 3: lllustration of FEM/DEM surface coupling

The so-called surface coupling (Fakhimi, 2009; Nakashim@®i&a, 2004; Onate & Rojek, 2004;
Villard et al., 2009) is probably the most straightforwarlipling method. The principle is to split the
whole problem into two non-overlapping domains, one matiéle FEM and the other by DEM (as
already illustrated on the steel beam — gravel example imtheduction). As long as there is no overlap
between the two domains, nothing special happens - bothatietre applied independently.

If a contact between a finite element and a DEM particle isatetk the new force becomes acting on
the DEM particle (causing its acceleration). The same f@ndth the same magnitude and the opposite
direction) of course acts also on the FEM element and is peeckas a load boundary condition, see
figure 3.
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In the current OOFEM/YADE implementation, the FEM boundésyrface) elements are copied
into DEM part as special particles. This approach allowsowsxploit efficient YADE contact detection
algorithms. The resulting DEM force and moment acting offieegr element are in FEM part transfered
into nodal forces and further assumed as external load.

2.4. \olume coupling

“{rans. zone >
FEM contribution DEM contribution

(a)
Fig. 4: lllustration of "master/slave” (a) and "Arlequin” ) FEM/DEM volume coupling

Volume coupling is similar to the surface coupling. Theelifnce is that the two subdomains overlap
each other. The possible usage of this approach could be el wfabncrete beam subjected to an impact
load (blast for example). The whole beam would be modeledEiM and only a small volume of the
concrete (the volume to be fragmented and crushed) woulddaeled by DEM.

There are two basic strategies how to model transition batiEM and DEM domains. The first
one, "direct” or "master/slave” method, (Azvedo & LemosP2) considers DEM patrticles overlapping
with FEM as direct slaves of the FEM mesh (using standard ten&stave” or "hanging nodes” ap-
proach). The second one, the "Arlequin” method (Rousseall,e2009; Wellmann & Wriggers, 2012),
considers a transition bridging zone, where the total nespas superposed from contributions of the
two models and is interpolated between both domains.

2.5. Multiscale coupling

Macro (FEM)

stiffness

stress strain

Q { - Micro (DEM) @ 3!
(BO solving BVP @O%

Fig. 5: lllustration of multiscale coupling according to €8rs et. al, 2010) applied to FEM/DEM

The idea of multiscale simulations is to model the problenttanlarge (macro) scale using infor-
mation from a lower (micro) scale. In the current contexg (first order) homogenization (Geers et. al,
2010) is presented. Geometric information (strain) frontracale (Gauss points of FEM mesh) is
transfered to the micro scale (representative volume alemBVE - modeled by DEM), see figure 5.
On the micro scale, the boundary value problem (BVP) gowkitnethe transfered prescribed strain is
solved using periodic boundary conditions (Stransky g&skk, 2010). The output of the micro-scale
problem are the stress tensor and the constitutive chasdict® (stiffness tensor), which are transfered
back to the macro-scale problem.
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As an example of this approach, consider a model of a larg@lsaoh sand. On macro scale, sand
is usually considered as a continuous material. DEM mogadina large sand sample with individual
grains modeled by individual particles would not be feasibAccording to these two facts, the macro
scale problem is modeled by FEM. However, the particulanneadf sand is preserved in the microscale
RVE simulations, which provides the FEM part with stress atifiness. Thus we do not need any
explicit expression of the material law on the FEM scaleqitletermined from the actual micro RVE
response).

The stress and stiffness can be evaluated either analytarahumerically. The analytical formulas
(Kuhl et. al, 2001) are inspired by the microplane theory arel derived from Voigt's hypothesis. It
assumes that the strairis distributed uniformly in the RVE and, consequently, thkative displacement
u® of each contact can be expressed and decomposed in the form (see (Kuhl200dl) and equations
(8-9) for more details):

u=¢e-1°=|1°e-n° =uiyn®+ur (12)

uf = n® = (JIle - n%) 0 = ] (n°@n°) re = I N°: € (12)
us = u’—uyn® = |19 e-n°— |1 e : (n°®@n)n° = |1 e: (I¥" n—n®n®n) = |1 T : e (13)
N¢=n®@n°andT¢=I""-n‘—n‘@n‘®n¢ are auxiliary projection tensors akid™ = %[5ﬂ§jk+5ik5jl]

is the fourth order symmetric identity tensor. The equirraéeof macroscopicl/) and microscopicr)
virtual work

1 1 1
. _ M _ m o __ c c c c c cl.
o : e =0W = W ——Cgevf - 6u ——cgevf -de -1 ——cgev[f ®19:6e  (14)

yields the expression for the stress tensor (with subistitudgf equations (8) and (9))

1 c clsym 1 c crc c clsym
o = o DI @I = o3I (N5 + [ @0, (15)
ceV ceV

Substituting equations (9), (12) and (13) into (15)

1
o = = 37T (N + [0 @ kjug™™) =
ceV

1 c cr.c |1¢ c c c e c m
= VE 1) (NCRG I N° : & + [n° @ k7 [19] T : e]Y™) = (16)
ceV

1
=% Z 116) 2 (k4 N€ @ N€ + kS [n® @ T™) : ¢
ceV
and comparing (16) with (2) yields the expression for thifngss tensor

1 C (& (& (& C (& clsym
4D:V§/||l | 2(k& N @ N€ + k§[n® @ T™)

1 1
Dijjp = 7 Z CE [(lgfv — kp)ninjngni + k‘%z (n§nfdsu + ningdy + ninfd, + ningda) | -
ceV
7)

This estimation of the stiffness tensor is derived from timeinatic constraint, thus it is an upper
bound of the real one. If the real strain state differs too Imiwom the assumed uniform state (strain
localization for instance), the analytical stiffness mstiion is no more valid and the stiffness has to be
computed numerically. The aspect of strain localization ba in same cases captured by the imple-
mented periodic boundary conditions, s&enflauer et al., 2010) and (Stransky & Jirasek, 2010),tbu
will be among other aspects (second order homogenizatidndtance) subjected to further analysis and
development.
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2.6. Contact analysis

The idea of contact analysis (Frenning, 2009) is very sinapleé opposite to the multiscale approach.
The material on the large scale is considered to be of a platénature and is modeled by particles
using DEM. Each such patrticle is further modeled by FEM.

There is no strict border between the cases when the solaéinrbe considered as contact FEM
analysis and when it is already DEM. For only a few particleswould probably use the former one, but
when the number of particles is large, the DEM modeling (wglefficient contact detection algorithms)
would be more convenient. This strategy can be actuallyidered as full FEM, only the contact
detection is "borrowed” from the DEM program.

DEM 7 FEM

Fig. 6: Illustration of multimethod FEM/DEM contact analgs

3. Implementation

The current implementation serves only for testing of thehmds and functionality, therefore not all
features are in public versions of OOFEM and YADE yet. Sitigpaper is about open source coupling,
the changes will be (after further testing and bug-fixingtafirse merged to public versions and will be
available for any potential user/developer.

From the point of view of Python, all important functionglis concentrated into theakenupi f
module, which provides several classes derived from the BasDenCoupl er class. Each such
class has itst ep method, which is the only needed additional command in coisga with non-
coupled simulations (see the example scripts in the foligwdections). When the testing is finished,
the functionality (probably with some syntax and internadle modifications, but with same high-level
simplicity) will be implemented into thé/uPI F project (Patzak, 2011) to enable coupling with other
programs or other physical models (heat transfer for igan

Pyt hon
(rmodul e fakemnupi f)

MuPI F

YADE_API

OOFEMAPI

OOFEM YADE
Pyt hon Pyt hon
interface interface

OOFEM YADE
Pyt hon Pyt hon
interface interface

OOFEM YADE
(@) (b)

Fig. 7. Current (testing) (a) and planned (b) implementatio

4. Examples

In this section, one specific simple example for each digglissupling strategy is presented.



Stransky J., Jirasek M. 1243

(a) (b) ()

Fig. 8: Results of surface coupling - soil-tire contact:
simulation setup (a), detail of contact (b) and resultingtieal normal stress in FEM domain (c)

4.1. Surface coupling: soil-tire contact

Simulation of the soil-tire contact, inspired by (Nakashi® Oida, 2004), is presented here. The tire
is modeled by FEM as a linear elastic material, the soil is efextlby DEM as spherical particles. Of
course, in a real simulation we could use a more complicaigdisin geometry, a more advanced (than
just linear elastic) material model for the tire and so ort,fouan illustrating and testing example the
present assumptions are sufficient. See figure 8 and codek3l an

4.2. Volume coupling: three point bending

3

Fig. 9: Results of three point bending:
initial state (a), undeformed and deformed final state (lij aormal stress (c)

In this example, a simply supported beam was simulated. THwerbeam body was simulated by
FEM, only the part with maximal tensile normal stress wassated by DEM. The vertical displacement
of the middle cross section was prescribed.

Again, the elastic solution is nothing special here, buteiad of linear elastic particles we could
use a kind of material model for fracture description (Aav&lLemos, 2004), thus the expected crack
initiation and propagation in the middle cross section \idad modeled with the help of discrete models.
See figure 9 and codes 2 and 6.

4.3. Multiscale coupling: uniaxial strain

Uniaxial strain (oedometric test) of a sample consistingwaf different (linear elastic) materials (with
stiffness ratiol /2) is simulated in this example. The macro-scale problem iglefenl by two brick
elements. Each FEM element has eight integration points.e&ch integration point, a DEM micro-
scale RVE simulation is performed, in which the FEM presadlilstrain is imposed. The resulting stress
and stiffness are transfered back to the macro-scale FEMaion.

In figure 10, magnified results are plotted. In each matenia micro RVE result is displayed (all
RVEs in the same material, due to the simulation setup, spomd to each other). The results of linear
elastic behavior are not extremely spectacular indeedysing nonlinear behavior of RVEs (resulting
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Fig. 10: Results of multiscale uniaxial strain test

in higher stiffness when more inter-particle contact odourinstance) could be very useful for certain
applications.

See figure 10 and codes 3 and 7.

4.4. Contact analysis: cantilever shock analysis

In this example, the simulation of a cantilever shock is @nésd. The shock is caused by the fall of an
impactor — another beam in our example — on the end of theleasti Both cantilever and the falling
beam are modeled by FEM, only a detection algorithm is bagrbivom DEM. This contact detection
between particles of FEM elements shapes (tetrahedraakshiis a typical example of the code, which
is not public yet and needs more testing to be committed tdigoubrsion. See figure 11 and codes 4
and 8.

L

Fig. 11. Results of cantilever shock analysis — differeajgs of impact

5. Conclusions

The basic principles of the most popular FEM/DEM couplimatgtgies (surface, volume, multiscale and
contact coupling) were presented, together with specificrgtes and corresponding Python scripts. All
methods can be arbitrarily combined with each other or witteretnt methods/programs (which uses
Python user interface).

As an example, consider a dynamic soil compaction. The cotagaoil would be definitely mod-
eled by DEM, the compactor by FEM (here we have surface cogipknd the rest of the soil domain
by FEM. The soil DEM / soil FEM interface would probably be of@ume coupling kind. Of course,
the FEM soil could be modeled using the multiscale approact,we could go in coupling further and
further.
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This example was just to show the variety of possible cogptiombinations and that there are a lot
of real world problems, where such coupled methods couldseéuli Together with the simplicity of
creating, modifying and running such simulations and esitglity of the used programs (due to the open
source character of the code) it makes this approach atgrdot a variety of engineering problems.

Future work on this topic will address (among others) seaanagér DEM homogenization, adjust-
ment of DEM periodic boundary conditions for arbitrary lbzation analysis, implementation and test-
ing of Arlequin volume coupling method, implementation ohtact detection algorithms of FEM ele-
ment shaped particles and implementation of testiagenupi f interface intovuPI F framework.
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Appendix A. Example scripts and input files
Python scripts controlling examples in section 4 are prteskim this section.

Currently, OOFEM simulations use input text files, while YBRonstructs the simulation directly
in a Python script. Therefore the OOFEM input files (or a gigant parts of them) are followed by the
actual Python scripts.

Since thef akenupi f module will be changed and adjustedNuPI F requirements, the actual
codef akemupi f is not presented. However, the simplicityadupl er . st ep() line (from the user
point of view representing the entire coupling processukhbe preserved.

test _surface. oof em out

surface coupling test - tire-soil contact

Linear Static nsteps 1000 nnmodul es 1

vtk 1 tstep_step 20 domain_all vars 2 1 4 prinmvars 1 1

donmi n 3d

Qut put Manager tstep_all dofman_all el enent_al

ndof man 64 nel em 192 ncrosssect 1 nnmat 1 nbc 2 nic O nltf 2

node 1 coords 3 -3.000000e-01 0.000000e+00 -1.000000e-01 bc 3 0 0 O

node 34 coords 3 0.000000e+00 0. 000000e+00 -1.000000e-01 bc 3 1 2 1

node 64 coords 3 -1.307587e-01 1.822355e-01 -4.467372e-02 bc 3 00 0
Itrspace 1 nodes 4 32 40 42 45 crosssect 1 mat 1

Itrspace 192 nodes 4 38 32 55 46 crosssect 1 mat 1

SinmpleCS 1 thick 1.0 width 1.0

IsoLE 1 d 0. E 100e9 n 0.4 talpha 0.0

BoundaryCondi tion 1 | oadTi neFunction 1 prescribedval ue 0.0
Boundar yCondi ti on 2 | oadTi neFunction 2 prescribedvalue 1.0
Constant Function 1 f(t) 1.0

Pi ecew seLi nFunction 2 npoints 3t 3 0 500 1000 f(t) 3 0 0.01 0

Code 1: testsurface.oofem.in

t est _vol unme. oof em out

vol une coupling test - hanging nodes - three point bending
NonLi near Stati c nsteps 50 nnodules 1

vtk 1 tstep_step 1 domain_all vars 2 1 4 primvars 1 1

donei n 3d

Qut put Manager tstep_all dofman_all el enent_al

ndof man 2478 nel em 1764 ncrosssect 1 nmat 1 nbc 2 nic O nltf 1
node 1 coords 3 0.000000e+00 0. 000000e+00 0.000000e+00 bc 3 0 1 0

node 2478 coords 3 6.000000e+00 3.000000e-01 4. 000000e-01 bc 3 0 1 1
| space 1 nodes 8 2 9 58 51 1 8 57 50 crosssect 1 mat 1

| space 1800 nodes 8 2422 ... 2470 crosssect 1 mat 1
SinmpleCS 1 thick 1.0 width 1.0

IsoLE 1 d 0. E 40e9 n 0.2 tal pha 0.0

Boundar yCondi tion 1 | oadTi neFunction 1 prescribedvalue 0.0
Boundar yCondi ti on 2 | oadTi meFunction 1 prescribedval ue le-2
Pi ecewi seLinFunction 1 npoints 2t 2 0 50 f(t) 2 0. 1.

Code 2: testvolume.oofem.in
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test _nmulti.oof em out

mul ti scal e coupling test

NonLi near Stati c nsteps 50 nnodules 1

vtk 1 tstep_step 1 donmin_all vars 2 1 4 prinvars 1 1
donei n 3d

Qut put Manager tstep_all dofman_all el enent_al

ndof man 12 nelem 2 ncrosssect 1 nmat 2 nbc 2 nic O nltf 2
node 1 coords 3 0.00.00.1bc 3111

| space 1 nodes 8
| space 2 nodes 8
SinpleCS 1 thick 1. h 1.0

Mul ti Scal eSMvat 1 d 0. E 40e6 n 0.2 talpha 0.0

Mul ti ScaleSMvat 2 d 0. E 80e6 n 0.2 talpha 0.0

Boundar yCondi ti on 1 | oadTi neFunction 2 prescribedval ue 0.0
BoundaryCondi ti on 2 | oadTi neFunction 2 prescribedval ue -1le-2
Pi ecewi seLinFunction 1 npoints 2t 2 0 50 f(t) 2 0. 1.
Const ant Function 2 f(t) 1.

56 7 8 crosssect 1 mat 1
8 7 11 12 crosssect 1 nmat 2

N
ownN
s ow
ik

Code 3: tesimulti.oofem.in

t est _cont act. oof em out

contact coupling test - cantil ever inpact

DElI Dynami ¢ nsteps 12000 nnodul es 1 dunpcoef 0 deltaT le-4

vtk 1 tstep_step 30 domain_all vars 2 1 4 prinvars 1 1

domain 3d

Qut put Manager tstep_all dofman_all el enment_all

ndof man 90 nel em 32 ncrosssect 1 nmat 1 nbc 2 nic O nltf 1

node 1 coords 3 0.000000e+00 0.000000e+00 0.000000e+00 bc 3 1 1 1

node 90 coords 3 1.723500e+00 1.744000e+00 - 1. 000000e-01
| space 1 nodes 8 2 5 14 11 1 4 13 10 crosssect 1 mat 1 bodyloads 1 2

| space 32 nodes 8 72 75 90 87 71 74 89 86 crosssect 1 mat 1 bodyloads 1 2
SinpleCS 1 thick 1.0 width 1

IsoLE 1 d 1000. E 1e8 n 0.2 tal pha 0.0

Boundar yCondi tion 1 | oadTi neFunction 1 prescribedvalue 0.0

deadwei ght 2 | oadTi meFunction 1 conponents 3 0 0 10

Constant Function 1 f(t) 1.

Code 4: testcontact.oofem.in
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# exanpl e script for surface coupling - soil-tire contact
# first inport required nodul es

i nport fakenupif

from fakemupi f i nport oofem yade

nSteps = 1000

output = 50

# then instanciate FEM ...
oofenfile = '"test_surface. oofemin’

fem = fakerupi f.instanci at eQof enPr obl en( oof enti | e)
dem = yade. Orega()

# ... as well as DEM problem

dem mat eri al s. append(fakenupi f. def aul t Mat)

cl,c2 = (0,-.015,-.008), (.03,-.004,.017)

cl,¢2 = (-.15,-.4,-.15), (.15,-.3,.15)

rect = yade. pack.inAlignedBox(cl, c2)

rad = . 005

sphs = yade. pack. randonDensePack(rect, rad, spheresl nCel | =1000)
dem bodi es. append([sph for sph in sphs])

# DEM BCs
bcw = 3+rad
for b in dem bodies:
p = b.state. pos
if not (p[O]<cl[O]+bcw or p[O0]>c2[0]-bcw): continue
if not (p[1]<cl[1] +bcw or p[2]<cl]?2]+bcw or p[2]>c2[2]-bcw): continue
b. state. bl ockedDOFs = ' xyzXYZ’

#

coupl er = fakenupi f. SurfaceFenDenCoupl er (f em dem oof enFi | e)
dem bodi es. append([facet for facet in coupler.facets])

#

dem engi nes=|[
yade. For ceReset ter (),
yade. I nsertionSortCol |ider ([
yade. Bol_Spher e_Aabb(),
yade. Bol_Facet _Aabb()]),
yade. I nteracti onLoop(
[ yade. | g2_Spher e_Spher e_DenB8Dof Geom(),
yade. | g2_Facet _Spher e_Den8Dof Geon() ],
[ yade. | p2_Cpmvat _Cpmvat _CpnPhys()],
[ yade. Law2_DenBDof Geom CpnPhys_Cpn() ]
),
yade. Newt onl nt egrator (),
yade. PyRunner (command=" vt k. export Spheres(); vtk.exportFacets()’,\
i terPeriod=max(1, nSt eps/ out put)),
]
dem dt = yade.utils. PWaveTi meStep()/ 2.

# Yade vtk export
i mport yade. export
vtk = yade. export. VTKExporter(’'test_surface.yade’, startSnap=1)

# run
for i in xrange(nSteps):
coupl er. step()

# exit

print ' Finished!’

fem term nat eAnal ysi s()
dem exi t NoBackt race()

Code 5: controlling script for soil-tire contact simulatio
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# exanpl e script for volume coupling - three point ending
# first inport required nodul es

i nport fakemnupi f

from fakenmupi f i nport oofem yade

# then instanciate FEM ...
oofenfFile = "test vol unme. ocofemin’
fem = fakemupi f.instanci at eCof enPr obl en{ oof enFi | e)

# ... as well as DEM problem

dem = yade. Orega()

dem nmat eri al s. append(fakenupi f. def aul t Mat)

rect = yade. pack.inAlignedBox((2.8,0.0,0.12),(3.2,0.3,0.4))
sphs = yade. pack. randonDensePack(rect, 0. 02, spheresl nCel | =1000)
dem bodi es. append( sphs)

#
coupl er = fakenupi f. Vol umreFenDemCoupl er (f em dem oof enFi | e)
#

dem dt = .5xyade. utils. SpherePWaveTi neStep(. 02, 1000, 25€9)
dem engi nes=][
yade. ForceResetter(),
yade. I nsertionSort Col | ider ([
yade. Bol_Spher e_Aabb(aabbEnl ar geFact or=1. 5, | abel =" i s2aabb’)
1),
yade. I nteracti onLoop(
[ yade. | g2_Spher e_Spher e_DenBDof Geon( di st Fact or =1. 5, | abel =" ss2d3dg’ )],
[ yade. | p2_Cpmvat _Cpmvat _CpnPhys()],
[ yade. Law2_DenBDof Geom CpnPhys_Cpm()1]),
yade. Newt onl nt egr at or (danpi ng=. 3),
]
dem st ep()
i s2aabb. aabbEnl ar geFact or = ss2d3dg. di st Factor = - 1.

# Yade vtk export
i mport yade. export
vtk = yade. export. VTKExporter('test_vol une.yade’, start Snap=1)

# run 50 steps of sinulation and save results
for i in xrange(50):
coupl er. step()
vt k. export Spheres(what =[ (' dspl’,’ b.state.displ()’')])

# exit

print ’Finished!’

fem term nat eAnal ysi s()
dem exi t NoBacktrace()

Code 6: controlling script for three point bending volumeaipbing example
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# exanple script for multiscale coupling - uniaxial strain
# first inport required nodul es

i nport fakenupi f

fromfakerupi f i nport oofem yade

# then instanciate FEM . ..
oofenFile = "test_nulti.oofemin’
fem = fakemupi f.instanci at eCof enPr obl en( oof enti | e)

# ... as well as DEM problem
dem = yade. Orega()
demvat 1 = dem nateri al s. append(fakenupi f. def aul t Mat)

demvat 2 dem mat eri al s. append(fakemnupi f. def aul t Mat 2)

#

coupl er = fakenupif. Ml ti Scal eFenDenCoupl er (f em dem oof enfi | e)
#

# Yade vtk export
i mport yade. export
vtks = {}
for gp in coupler.gps:
newScene = dem addScene()
coupl er. scenes. append( newScene)
dem swi t chToScene( newScene)
dem dt = .5xyade. utils. SpherePWaveTi neSt ep(. 001, 1000, 25e9)
dem bodi es. append(yade. pack. randonPeri Pack(. 001, . 02))
dem engi nes=|[
yade. ForceResetter (),
yade. I nsertionSort Col |i der ([
yade. Bol_Spher e_Aabb(aabbEnl ar geFact or =1. 5, | abel =’ i s2aabb’)
1.
yade. I nteracti onLoop(
[yade. |1 g2_Sphere_Spher e_DenmBDof Geon{ di st Fact or=1. 5, | abel =" ss2d3dg’ )],
[yade. | p2_Cpmvat _Cpmvat _CpnPhys()],
[ yade. Law2_DenBDof Geom CpnPhys_Cpn()]),
yade. Newt onl nt egr at or ( danpi ng=. 3),
]
dem step()
i s2aabb. aabbEnl ar geFact or = ss2d3dg. di st Factor = - 1.
vt ks[ newScene] = yade. export. VTKExporter(’'test_multi.yade%l %newScene)

# run 50 steps of sinulation and save results
for i in xrange(50):
coupl er. step()
for scene in coupler.scenes:
vt ks[ scene] . export Spheres(what=[ (" dspl’,  b.state.displ()')])

# exit

print ’Finished!’

fem term nat eAnal ysi s()
dem exi t NoBackt race()

Code 7: controlling script for multiscale uniaxial straitnsulation
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# exanple script for contact coupling - cantilever inpact
# first inport required nodul es

i mport fakerupi f

from fakenmupi f i nport oofem yade

nSt eps = 12000

# then instanciate FEM ...

oofenFile = "test contact.oofemin’

fem = fakerupi f.instanci at eCof enPr obl en( oof enti | e)

# ... as well as DEM probl em
dem = yade. Orega()
dem mat eri al s. append(fakenupi f. def aul t Mat)

#
coupl er = fakemnupi f. Cont act FenmDenCoupl er (f em dem oof enti | €)
#

dem bodi es. append( coupl er. dem mages)
dem engi nes=][
yade. For ceResetter(),
yade. I nsertionSort Col | ider ([
yade. Bol_Facet _Aabb()
1),
yade. I nteracti onLoop(
[yade. | g2_Facet _Facet _DenB8Dof Geon()],
[yade. | p2_Cpmvat _Cpmivat _CpnPhys()],
[ yade. Law2_DenBDof Geom CpnPhys_Cpm()1]),
]

# run
for i in xrange(nSteps):
coupl er. step()

# exit

print ’Finished!’

fem term nat eAnal ysi s()
dem exi t NoBacktrace()

Code 8: controlling script for cantilever shock analysis



