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Abstract: The paper describes the application of technical theory of thin-walled box structures for the 
assessment of shear lag effects in thin-walled box bridges subjected to dynamic loads. The approach 
takes into account multiple functions in assessment of slender box bridges constructed of thin-walled 
members. Theoretical and numerical assessments of the problem are presented.  
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1. Introduction 

Due to economy and weight restrictions slender thin-walled box members are often utilized in 
advanced bridge engineering. Even for structures that behave in linear fashion under service loads the 
safety considerations require that an analysis is to be carried out for the nonlinear range of behavior in 
order to determine the reliability with respect to collapse or possible damage due to overloading. 

2. Methods adopted  

The stress distribution in thin-walled members of box bridges is given by combination of sectorial 
influences stated in scope of technical torsion-bending theory and additional sectorial influences due 
to distortion and shear. The decrease of rigidity in thin-walled box members is specified by the shear 
lag appearing in additional degrees of freedom in mechanics of cross-sectional distortion. In order to 
take into account the decrease of normal rigidity, there are introduced additional sectorial functions ws 
due to distortional kinematics of thin-walled box cross-section studied (Bornscheuer, F.W., 1952 and 
Sedlacek, G., 1967). Such functions are dependent on additional cross-sectional deformations νs  given 
by 
                                             | w |=| wt , ws |T=| x, y, ω ; w1 , w2 , … |T , (1) 

and 

                                               | ν |=| νt , νs |T=| ξ, η, υ ; ν1 , ν2 , … |T, (2) 

The warping u is given by 

                                                                     u= -wT.ν´, (3) 

with strain  

                                                                     ε= -wT.ν´´, (4) 

and with normal and shear stresses given by   

                                                               σ =E.ε = -E.wT.ν´´ (5) 

and 

                                                                    τ= -G.ws.υs´. (6) 

The choice of additional sectorial functions ws appearing as linear functions of shear stress τ along the 
cross-section is made in accordance with rules of technical theory of thin-walled beams. Used are the 
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functions Ss ≈ S S Sx y, , ω = ∫ ∫ ∫ dAdAydAx ω,, , respectively, (A is the cross-sectional area) together 

with additional unit sectorial function ws = S dss∫ along the centre-line s. 

 
Fig. 1: Shear lag effect. 

The equilibrium state of thin-walled box system is given by  

                           δπ = ( )σ δε τ δγ δ δ. . . . . .+ − − ′
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⎫
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∫∫∫ dA p r v n wds v dzs
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0

= 0, (7) 

with shear strain γ and with first terms representing the virtual work of internal forces and further 
terms specifying the virtual work of external forces on displacements δν. 

If in above equation the stress σ is replaced by corresponding functions of displacements υs  the 
modified Eq. (7) is given by 
                                 l  
                       δπs = ∫ [δνs´´.E.Js.νs´´ + δνs´T.G.Ks.νs´ - δνs´T.p - δνs´.n.ws

T ] dz = 0, (8) 
                                0    
with E.Js and G.Ks as sectorial and shear rigidities of the cross-section studied and with corresponding 
load components p and n. The double integration of Eq. (8) gives   

                                                                l 
                                          ∫ {δνs [ E.Js.νs

IV - G.Ks.νs
II - p - n´.ws

 ]}dz = 0, (9) 
                                                               0 

and submits for each δνs ≠ 0 the system of simultaneous differential equations   

                                                     E.Js.νs
IV - G.Ks.νs

II = p + n´.ws
  , (10) 

for numerical treatment of the problem. 

Matrix equation (10) with unknown components of cross-sectional shear deformations νs is modified 
into diagonal shape of s differential equations given by  

                                              E.Js,ii.νs,i
IV - G.Ks,ii.νs,i

II = ps,i + ns,i´.ws,i. (11) 
Resulting displacements are given by strain components of non-deformable thin-walled cross-section, 
combined with components of unit shear deformations. 

Differential equations (10) and (11) are formally identical with differential equation of the girder with 
flexural rigidity E.Js subjected to axial force G.Ks. The solution is known with the analogy of 
components 

− ′′E J vs ii s i. ., , = Ms,i   ,   (12) 

− ′′′E J vs ii s i. ., ,  = ′M s i, =  Ts,i   ,   (13) 

612



 

with flexural moment M and lateral force T. Corresponding normal and shear stresses are given by  

                                                                 σs,i = 
M
J

ws i

s ii
s i

,

,
,.  (14) 

and  

                                                              τs,i = − ′G w vs i s i. .,
.

, . (15) 

With implementation of the Fourier integral transformation into the Transfer Matrix Method (Tesár, 
A., 1977, 1988, 2005, 2006 and 2010) is studied the influence of the shear lag in the response of thin-
walled box bridges subjected to periodic, non-periodic and moving dynamic loads.  

 
Fig. 2: Thin-walled box bridge with nodal points for assessment of torsion. 

 
Fig. 3: Comparison of normal torsion stress without and with of shear lag. 

3. Application 
Cross-sectional geometry of the single span bridge studied is plotted in Fig. 2. The span of the bridge 
is L = 70 m. Concentrated load P acts in location L/2 = 35 m. Torsion is initiated by two mid-span 
loads P/2 acting in vertical direction up and down in the flanges of thin-walled cross-section studied. 
Calculated are the stresses in flexure and torsion due to shear lag. Maximal shear stress and resulting 
normal stresses in torsion without and with consideration of the shear lag are summed up in Fig. 3. For 
real situations all stresses obtained are to be multiplied by actual value of the load P.  
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Such results are to be taken into account in the assessment of ultimate behavior of thin-walled 
members of slender box bridges.   

4. Conclusions 

The approach for assessment of the shear lag effect in thin-walled box bridges is suggested. Technical 
torsion-bending theory of thin-walled structures is adopted for theoretical and numerical treatment of 
the problem. Such assessment is a part of the bridge design and monitoring in order to specify the 
safety with respect to collapse and damage due to overloading.  
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