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FRICTION ELEMENTS 
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Abstract: This paper is concerned with mathematical modeling of the imperfect bladed disk with friction 
elements, which are used to suppress blade vibration. These kinds of systems are mainly used in steam 
turbines where our interests are aimed. The friction elements are placed between shrouds of selected 
central symmetrical mounted blades (imperfection). A slipping is considered on the both contact surfaces. 
The model of the bladed disk is based on decomposition into a disk subsystem and a blading subsystem. 
The finite element method is used for modeling of the both subsystems. All influences of steady-state 
rotation are respected as centrifugal forces, gyroscopic effects, centrifugal stiffening of blades and 
dynamic softening. The model is used for a modal analysis of non-rotating and rotating imperfect bladed 
disk. Selected natural modes of non-rotating system will be shown. Dependency of eigenfrequencies on 
the angular velocity is presented in Campbell diagram. The methodology of simulation and post-
processing are implemented in an in-house software.  
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1. Introduction 

Requirements on higher efficiency and wide operation range of steam turbines lead to thinner blade 
profile, which has better properties in term of computation of fluid dynamics (CFD) but dynamic 
properties get worse. The purpose of friction elements is to decrease potential high amplitudes of blade 
vibration, which may occur due to resonances or high applied forces of steam flow fluctuation. The 
aim of this paper is to present methodology for bladed disk vibration analysis of damped blades 
applicable for test imperfect bladed disk used in Institute of Thermomechanics AS CR.  

The presented method is based on discretization of 3D disk (Šašek & Hajžman, 2006) and 1D blades 
(Kellner & Zeman, 2006) by FEM. A harmonic balance method will be further used for modeling of 
bladed disk vibration with friction elements, which are placed between blade shrouds (see Fig. 1 and 
Fig. 2). The comparison between flexible and rigid shroud is performed in Zeman et al. (2009) entitles 
the shroud modeled as a rigid body fixed with blade in the end of blade’s profile. 

2. Model of imperfect bladed disk 

The imperfect bladed disk is consists of a disk, which is fixed on inner radius to rigid shaft, and two 
kinds of blades. Blades of the first type are mounted to disk with rigid joint. A rigid shroud is placed in 
the end of the second type of blades. Friction elements are placed between shrouds (see Fig. 2). Each 
type of blades is separated into two sets (2x25 blades of the first type, 2x5 blades of the second type), 
which create bladed disk with two perpendicular axis of symmetry. There are 2x4 friction elements in 
the both sets of the second type of blade. 

The stiffness coupling matrix between friction elements and blade shrouds is derived from 
deformation of adjacent shroud contact areas caused by relative movements of blades and friction 
elements and by centrifugal forces acting on friction elements.   
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Fig. 1: The second type of blades with friction 
elements. Fig. 2: Detail of shrouds with friction elements. 

This model respects contact stiffnesses between blades and damping elements iE  on both contact 
areas, defined by contact stiffness matrices 
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The matrices express the constraint between the circumferential displacement and two rotations by 
means of contact stiffness ςk  in normal direction to concrete contact area xxηξ  and two flexural 
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These matrices are expressed in local coordinate systems xxx ςηξ ,,  placed in central contact point iB  
of the radial contact area of blade shroud ,i  respective in central contact point 1+iA  of the blade 
shroud 1+i  on the slope area. The point iE  is the center of gravity of the friction element. The 
coupling (deformation) energy between two adjacent blades i  and 1+i is expressed as 
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where 1,, , +iAiB qq  are vectors of blade shroud displacements of points 1, +ii AB  and iE ,q  is vector of 

gravity center iE  displacements of friction elements, where i  is blade index. The transformation 
between vectors 1,, , +iAiB qq  in local coordinate systems 1,, += iixxx ABxςηξ  and vectors 1,, , +iCiC qq  
of global coordinates of end nodal points of the adjacent blades is 

 ., 1,1,,, ++ == iCAiAiCBiB qTqqTq  (3) 

Matrices EB,T  and EA,T  transform vector iE ,q  into displacements of contact points iB  and 1+iA  in the 

local coordinate systems .,, 1+= iixxx ABxςηξ  

The disk is modeled analogously as in paper (Šašek & Hajžman, 2006) by means of 3D continuum FE 
discretization. The mathematical model of the bladed disk rotating with angular velocity ω  ad interim 
with smooth friction elements was derived in configuration space TT

D
T
D ][ qqq = , where Dq  is 

vector of generalized coordinates of the disk and Rq  is vector of generalized coordinates of all blades 
and friction elements. The connection of the blades and the disk is realized by rigid joint which is 
described in Kellner, J. & Zeman, V. (2010).  
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The conservative mathematical model of the centrally clamped bladed disk rotating with constant 
angular velocity ω  around y  axis has the form 

 ( ) ,2
222 fqKKKKqGqM ωωωω ω =−++++ dCs&&&  (4) 

where M  is mass matrix, Gω  is skew-symmetric matrix of gyroscopic effects, sK  is static stiffness 
matrix, ωK  is matrix of blade centrifugal stiffening and dK  is matrix of dynamic softening of 1D and 
3D continuum in centrifugal field. The contact stiffness matrix CK  between friction elements and 

shroud contact areas are calculated from identity qK
q C
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∂
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3. Modal analysis of bladed disk 

Correctness of the modeling methodology of the imperfect bladed disk is advised by modal analysis of 
the test bladed disk (Půst & Pešek, 2009). First eight natural modes of non-rotating bladed disk are 
rigid ( 082,1 =Kf  Hz). These natural modes are characterized by oscillation of the friction elements in 
y  direction because of smoothness of the friction elements. The next four mode shapes are shown on 

Fig. 3 to Fig. 6. We can separate the modes into 2 pairs. The first pair, where blades oscillate in the 
opposite way, is consists of the 9th and 11th natural mode. The 10th and 12th natural mode, where 
blades oscillate in the same direction, create second pair. All pairs are characterized by 1 nodal 
diameter (ND), where the disk and the blades don’t oscillate. The nodal diameters are perpendicular in 
corresponding mode shapes of one pair. Different values of pair eigenfrequencies are given by 
imperfect blades.  

 

Fig. 3: The 9th natural mode ( 23.899 =f Hz, 
1 ND). 

Fig. 4: The 11th natural mode ( 41.11011 =f Hz, 
1 ND). 

 

Fig. 5: The 10th natural mode ( 73.9310 =f Hz, 
1 ND). 

Fig. 6: The 12th natural mode ( 38.12012 =f Hz, 
1 ND). 
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The dependency of eigenfrequencies is shown in the Campbell diagram (see Fig. 7) diagram for 9th to 
16th eigenfrequencies and for angular velocity 3000,0=ω  RPM. The blade centrifugal stiffening 

effect represented by matrix ωK  influences the eigenfrequencies mostly. The other effects of rotation 
affects less the eigenfrequencies.  
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Fig. 7: Campbell diagram for 9th to 16th eigenfrequencies and for angular velocity 

3000,0=ω  RPM. 

4. Conclusions 

The presented model of the imperfect bladed disk with the smooth friction elements is the first step for 
bladed disk vibration analysis of damped blades. The correctness of the methodology is checked on 
the modal analysis of non-rotating and rotating testing bladed disk, where all influences of steady-state 
rotation are considered.  

The developed methodology and mathematical model of the imperfect bladed disk will be further used 
for modeling of the test bladed disk vibration respecting friction forces in contact surfaces between 
blade shrouds and friction elements using harmonic (balance) linearization method.  

Acknowledgement 

This work was supported by GA CR in the project No. 101/09/1166 “Research of the dynamic 
behaviour and optimization of complex rotating system with non-linear couplings and high damping 
materials”. 

References 
Šašek, J. & Hajžman, M. (2006) Modal properties of rotating disk, in: Proc. of the 22nd Computational 

Mechanics, UWB in Pilsen, Hrad Nečtiny, pp. 593-600.  
Kellner, J. & Zeman, V. (2006) Influences of dynamic stiffness, centrifugal forces and blade’s elastic seating on 

blade modal properties, in: Proc. of the 8th International Conference Applied Mechanics, UWB in Pilsen, 
Srní, pp. 47-48. 

Zeman, V., Šašek, J. & Byrtus, M. (2009) Modelling of rotating disk vibration with fixed blades, Modelling and 
optimization of physical systéme 8, Gliwice, 125-130. 

Kellner, J. & Zeman, V. (2010) Modelling of the bladed disk vibration with damping elements in blade shroud, 
Applied and Computational Mechanics, 4, 1, pp. 37-48. 

Půst, L. & Pešek, L. (2009) Vibration of imperfect rotating disk, in: Computational Mechanics 2009 – Book of 
Extended Abstracts, UWB in Pilsen, pp. 1-2. 

590


