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MECHANICS OF FLAT TEXTILE FABRICS – THEORY 

B. Striz*, M. Vysanska* 

Abstract: The presented work is focused, from wide textile problems, on research of mechanical 
properties of flat textile fabrics, the geometrically and also physically non-linear directionally oriented 
formations. The method of continuum mechanics is used, where textile flat fabric is substitute by 
continuous medium with the same mechanical properties.  
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1. Introduction  

Identification of mechanical properties of uniaxially or biaxially loaded flat textiles is physical 
problem, which leads in general case to seven unknowns’ task.  

Fabric is so unique formation, that it is necessary to describe its mechanical properties (contrary to 
solids) for each concrete state of stress and transformation. Constitutive dependence in plane 
composition is possible to express by three equations.  

Substitution of fabric with expressive structure by plain continuum with the same mechanical 
properties allows to use continuum mechanics equations and to define basic mechanical properties of 
textile fabric. Dependence between Euler and Lagrange coordinates of points (previously described by 
Chandrasekharaiah & Lokenath Debnath, 1994; Okrouhlik, 1995; Striz, 2003) is possible to determine 
from measured movements of observed points on the flat textile (Fig. 1): 

Fig. 1: Show of original and deformed sample and way of its coordinates reading. 
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where p is a number of point, circle indicates Lagrange coordinates. If we replace derivations in 
equation (1) by differences of ending points of diagonals of selected generally irregular element  
(Fig. 1), we can define material deformational rate F by solution of equation systems:    
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Differential of movement wi;j, i, j = 1, 2 in a plain of element is set like a constant and labeling (;), i.e. 
derivation according to Lagrange coordinate, is not used and wi;j = vij is implemented. From difference 
equation (2) the algebraic equation system is obtained: 
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Material deformational rate r
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=  is given by equation system (3) solution. The result is: 
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Let’s extend tensor F with non-dimensional movement w3;3 = v33. The result is 
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and jacobian  
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Quantity v33 is determined by fabric thickness change: 

                                                                     ( ),1 330 vhh +=   (6) 

where h0 is original measured thickness of fabric. Elongation tensor U and tensor of rotation R is 
defined by material deformational rate F. It is valid: 

                                                              ..,.2 URFFFU T ==   (7) 

Elongation tensor U is possible to define e.g. by projector method defined e.g. by Striz (2001). Let’s 
label tensors U, R with components: 
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The clamping of measured fabric sample has to allow movements in both directions of loading. In case 
of angular rotation of main axes of fabric sample anisotropy the clamping has to allow sample’s slope. 

On a basement of these assumptions the values of vij defined on an element of sample is possible to 
spread on a whole sample. Coordinates of peaks, lengths of deformed sides and goniometric functions 
of bevel angle are defined from sample shape. Tensor of real specific forces Σ [N/m] is determined 
with help of forces Q1, Q2 (operate in axes of loading) from equations of mechanics. Let’s mark 
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2. Conjugated Pairs 

The continuum mechanics introduces so-called conjugated pairs, i.e. connection among different types 
of definitions of stress tensor and strain tensor. Their scalar product on chosen interval of loading has 
to satisfy condition of equability of mechanical work or power. Just perfect sample loading and its 
homogenous shape can fulfill this. 

Conjugated pairs differ in parameter „n“. The best known are conjugated pairs with parameters 2, 1, 0, 
-1, -2. The big number of them can exist, but special importance has Biott’s pair (n = 1), which very 
often gives on so-called “conventional” tension, related to original size of the sample.  

Biott’s tension and deformation can be expressed like: 
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 where I is unit tensor. Other stress tensors (except Cauchy’s) can be expressed like: 
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and for strain tensors is valid 
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All conjugated pairs have to fulfill condition of mechanical work (power) equality. The following 
equation is for textile fabric plane state of stress 
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Q
xQx =  Permanency of equation (15), for given load and for all conjugated pairs depends 

on accuracy of reading of fabric sample peaks’ coordinates (fig. 1) and on determination of material 
deformational gradient F (4). 

3. Nonlinear Task 

Six mechanical modules determine monoclinic anisotropy and can be expressed by this tensor: 
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Strip over the modules indicates plane state of stress according to ( ),1 2
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=  where Eij is 

modulus of triaxial state of stress, νij is Poisson’s ratio.  

Equation system for modules determination⎯Eij: 
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where .22tan
2211
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σσ
σ

ω
−

=  Angle ω is between main anisotropy axis and load axis.  

Shear stress is zero on the main axis. This enables to define angle ω. The E’14 and⎯E’24 are on this 
axes zero. Then it is valid 0,0 24142414 =′−′=′+′ EEEE and from these conditions fourth and fifth 
equation follows (17). The following equation is used for isotropic materials: 
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EG  is shear modules. Let’s change modulus G for⎯K4 in equation (18) and we get equation 
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where just ε33 is unknown. Deformation ε33 is possible to express in dependence on conjugated pair  

           ( ) .11 3333 −+= nvnε  (20)

Transverse proportion of fabric ( )330 1 vhh +=  is in equation (20) dependent on choice of conjugated 
pair. If the method of fabric attenuation measurement (under defined loading) will be realized, then 
exponent „n“ and choice of conjugated pair can be done.  

4. Conclusion 

Determination of explicit conjugated pair depends on perfect biaxial loading apparatus, equipped with 
stepper, with possibility of fabric free welts movement during loading increment. This equipment is 
prepared. Development of methodic for fabric attenuation measurement (for given loading) is further 
condition. Only measurement of real change of fabric transverse proportion allows choosing suitable 
conjugated pair. These are conditions for fabric mechanical properties determination. 
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