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ANALYSIS OF AXISYMMETRIC CIRCULAR PLATE BENDING 

PROBLEM 
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Abstract: Axisymmetric circular plates subjected to stationary and transient dynamic loads are analyzed 
in the presented paper. Effect of viscous damping is also considered. Dynamic loading with impact and 
stepped time history is taken into account. The governing equation for the bending of plate represented by 
partial differential equation (PDE) of the fourth order is decomposed into two coupled PDEs of the 
second order. Clamped plate edge as a boundary condition is assumed. Axisymmetric assumptions reduce 
the problem to one dimensional. Each node is a center of 1-D interval subdomain. The weak-form on 
these small subdomains is applied to derive local integral equations with a unit step function as the test 
function. Moving least-squares (MLS) approximation technique is applied to obtain system of ordinary 
differential equations (ODE). Houbolt finite difference scheme is finally applied to solve this system of 
ODE for certain nodal unknowns. 

Keywords:  Local integral equations, meshless approximation, Kirchhoff plate theory, Houbolt finite-
difference scheme. 

1. Introduction 

Analysis of circular plates is basic problem in structural mechanics, as long as many structures, like 
containers or reservoirs, have circular basement. Another reason why to deal with circular plates is the 
availability of exact solution that is convenient for assessment of new numerical techniques.  

The MLPG (Meshless Local Petrov-Galerkin) method (Atluri, 2004) is one of the most rapidly 
developing meshless method. The MLPG method was applied to static and dynamic loading of thin 
circular and square plates (Sladek et al., 2003), also to dynamic loading of thick Reissner-Mindlin 
plates (Sladek et al., 2007). Recently, MLPG method was applied also to laminated composite plates 
(Sladek et al., 2010a) and piezoelectric plates (Sladek et al., 2010b). 

Presented approach reduces the problem of bending of circular plate to 1-D with the assumption of 
axisymmetric conditions. The governing equation for for plate bending problem is decomposed to 
reduce the order of differentiation. Application of MLS approximation to derive local integral 
equations leads to the system of ordinary differential equations that is solved by the Houbolt method. 

2. Local integral equations for an axisymmetric circular plate  

Let us consider a homogeneous axisymmetric clamped circular plate with the radius r and thickness h 
occupying the domain Ω . The plate is subjected to the transverse dynamic load ( ),q tx . According to 
the classical (Kirchhoff) plate theory the differential equation for the plate deflection ( ),w tx  can be 
written in the form 

                                      ( ) ( ) ( ) ( )2 2 , , , ,D w t hw t gw t q tρ∇ ∇ + + =x x x x&& &  (1) 
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where ρ is the mass density, g is the viscous damping coefficient and 3 2/ 12(1 )D Eh ν= −  is the plate 
stiffness, with E as Young’s modulus and ν denoting Poisson’s ratio. The dots over the quantity 
represent differentiation with respect to time t. 

It is possible to decrease the order of differentiation in eq. (1) by its decomposition into two PDEs of 
the second order (Sladek et al., 2003) as 

                                                         ( ) ( )2 , ,D w t m t− ∇ =x x  (2) 

                                        ( ) ( ) ( ) ( )2 , , , ,m t hw t gw t q tρ∇ − − = −x x x x&& &  (3) 

where the quantity ( ),m tx  is proportional to the spur of the bending moment tensor as 

( )/ 1iim M ν= + (Balas et al., 1989). On a clamped edge of the plate, however, ( ),m tx  is equal to the 
bending moment ( ),M tx . For a simply supported edge this is only valid if the edge is straight (Sladek 
et al., 2003). For a circular plate with curved edges the quantity ( ),m tx  has no physical interpretation 
and the definition of boundary conditions is impossible. This is the main reason why only clamped 
circular plates will be analyzed. Note that Eqs. (2), (3) are coupled and that is why they must be solved 
simultaneously. If we restrict ourselves to symmetric material properties, loading and boundary 
conditions throughout the plate, the problem can be simplified to axisymmetric case in polar 
coordinates. Under axisymmetric conditions all the variables in Eqs. (2) and (3) will be function of the 
radial coordinate r only.  

The MLPG method is based on the local weak form of the governing equations. The local weak form 
for Eqs. (2), (3) is then written over a small local subdomain sΩ  (Atluri, 2004) as 

                                            ( ) ( ) ( )2 *, , 0
s

D w r t m r t h r d
Ω

⎡ ⎤∇ + Ω =⎣ ⎦∫  (4) 

                            ( ) ( ) ( ) ( ) ( )2 *, , , , 0
s

m r t hw r t gw r t q r t h r dρ
Ω

⎡ ⎤∇ − − + Ω =⎣ ⎦∫ && &  (5) 

where ( )*h r  is the weight or test function. In the present analysis unit step function is used, as defined 
by Sladek et al. (2010a). Let w and m, hereafter called the trial functions, be an approximate solution 
to the problem. Integrating Eqs. (4), (5) by parts with assumptions of Laplace operator 2∇ in polar 
coordinates, considering the integration element d rdrΩ =  for the axisymmetric circular plate and 
making use of the unit step weight function defined over sΩ   is leading to local integral equations for 
the presented problem. This process can be also observed in papers by Sladek et al. (2003, 2010a). 

The MLS (Moving least-squares) approximation (Lancaster & Salkaustas, 1981; Atluri, 2004) can be 
used for the approximation of unknown quantities in terms of the nodal values as 

                           
1

ˆ( , ) ( ) ( )
n

h a a

a

r rτ φ τ
=

=∑w w ,   , ,
1

ˆ( , ) ( ) ( )
n

h a a
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a

r rτ φ τ
=

=∑w w  (6) 

where ( )a rφ , ( ),
a

r rφ  are called MLS shape functions for unknown quantity and its derivative. 
Applying Eq. (6) for approximation of trial functions ( ),w r t , ( ),m r t  and their derivatives with 
subsequent introduction into local integral equations gives the discretized local integral equations 
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1 1

ˆ ˆ 0
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n nbi i i i
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∑ ∑ ∑∫ ∫ ∫&& &  (8) 
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To impose boundary conditions, method of Lagrange multipliers or penalty method can be used in 
most of the numerical solution methods. MLPG, however, allows us to use also collocation approach 
to impose boundary conditions directly, using interpolation approximations (6) as 

1

ˆ( ) ( ) ( , )
n

i j i i j

i
r w w rφ τ τ

=

=∑ %   where ( , )iw r τ%  is the prescribed value of the deflection on the boundary. 

Similar approach can be adopted for the quantity ( ),m r t . Collecting the discretized local boundary-
domain integral equations together with the discretized boundary conditions for the generalized 
displacements, one obtains a complete system of ordinary differential equations (ODE) which can be 
rearranged in such a way that all known quantities are on the r.h.s. Thus, in the matrix form the system 
becomes 
                                                            + + =Ax Bx Cx Y&& &  (9) 

This system of ODE (9) can be conveniently solved by the Houbolt finite-difference scheme (Houbolt, 
1950; Sladek et al., 2010a). This method is strongly dependent on the size of the time step. The value 
of the time step must be appropriately selected with respect to material parameters and time 
dependence of boundary conditions.  

3. Numerical examples 

Let us consider a circular plate with the radius 0 0.5r = m and the thickness 0.002h = m. Material 
properties are as follows: Young’s modulus 112 10E = × Nm-2, Poisson’s ratio 0.3ν = and mass density 

7850ρ = kg.m-3. Two load cases are considered, a uniform static loading with q = 10 Pa and dynamic 
loading with the Heaviside time variation with amplitude q = 10 Pa. 21 equally-spaced nodes are used 
for the discretization of plate geometry. For the clamped axisymmetric circular plate under uniform 
static loading the exact solution is given as 

 ( )
224

0

0

1
64
qr rw r

D r

⎡ ⎤⎛ ⎞
⎢ ⎥= −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (10) 

Assuming 0r r= in Eq. (10) and inserting all quantities, the exact deflection of the plate center is 
obtained as ( ) 4

0 0.667w r r e−= = m. The variation of the deflection with the radial coordinate is 
presented in Fig. 1. The results are in excellent agreement. 

 
Fig. 1: Variation of the deflection with radial coordinate for clamped axisymmetric circular plate. 

Next dynamic loading is considered with the Heaviside time variation. Again 21 equally distributed 
nodes are used with radius of support domain with size of 10 times nodal distance of two neighboring 
nodes. Numerical calculations were carried out for a time step 30.8t e−Δ = s with 200 time increments. 
Viscous damping is also considered. It is defined through the damping parameter 0.1cg gξ = = , 
where the critical damping is 12cg hω ρ= , with 1 125ω = rad/s being the first natural frequency. 
Variation of the center point deflection with time is presented in Fig. 2. Results from MLPG analysis 
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are compared to transient FEM analysis with the same geometry and mesh as in the previous static 
case. A quarter of the plate is modeled due to symmetry in FEM/ANSYS code with fine mesh. Again, 
excellent match of the result is observed. 

 
Fig. 2: Variation of deflection at center of the considered plate with respect to time. 

4. Conclusion 

The MLPG method is presented for solving bending problems of thin axisymmetric circular plates. 
Both static and dynamic loads are considered. The analysed domain is divided into small overlapping 
subdomains. A unit step function is used as the test function in the local weak form. The MLS 
approximation scheme is adopted for approximation of unknown physical quantities. The proposed 
method is a truly meshless method as it requires no background mesh in neither interpolation, nor 
integration. It can be considered as an alternative to many existing computational methods. 
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