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DAMPING ON ROTOR STABILITY 
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Abstract: The paper deals with the modeling and evaluation of stability conditions of the balanced 
rotating system with rigid discs supported on two anisotropic hydrodynamic bearings. The model respects 
internal and external damping of the shaft considered as one-dimensional continuum. The evaluation of 
stability is based on eigenvalues in dependence on system rotating speed. Real and imaginary parts of 
computed eigenvalues are displayed by means of Campbell diagram. 
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1. Introduction 

The most of real mechanical systems are continuous and non-homogenous elastic systems. Therefore 
an approximation, which helps to simplify the description of a real system behavior with enough 
accuracy, is used. For that reason, it is necessary to specify material and geometric properties of a real 
system and the impact of each characteristic on its behavior. The damping effects are these properties 
which are necessary to include into a mathematical model. In case of rotating systems there are two 
kinds of damping effects. It is so-called external damping effect that is dependent on surroundings of 
the system and the internal damping effect caused by material properties of the system. Both these 
damping impacts cause the change of model parameters and the system stability.  

The aim of this paper is to present the impact of external and internal damping on the stability of a 
rotating flexible shaft with rigid discs supported on hydrodynamic bearings.  

2. Mathematical model of a rotor  

We suppose the rotor which rotates with constant angular velocity 0ω . It is composed of a circular 
cross-section shaft with continuously distributed mass. The rigid discs are attached to the shaft in 
given positions. The shaft with discs is supported by two identical hydrodynamic bearings. The layout 
of test rotor is shown in Fig. 1. 

 
Fig. 1: Scheme of the rotor supported on hydrodynamics bearings. 

The mathematical model of the rotor bending vibration is created by the finite element method (FEM), 
which is based on a shaft division into finite elements (shaft elements). The shaft element e of length l 
is defined by two end nodes i and i+1. The non-deformable cross-section area of each shaft element is 
considered and it is still perpendicular to the deformed shaft axis after deformation. Therefore the 

                                                 
* Ing. Zdeňka Rendlová and prof. Ing. Vladimír Zeman, DrSc.: Department of Mechanics, University of West Bohemia, 
Univerzitní 22; 306 14, Plzeň; CZ, e-mails: zrendlov@kme.zcu.cz, zemanv@kme.zcu.cz 

511



 

motion of the shaft is described by two displacements v, w in Y, Z direction and two angular 
displacements ϑ , ψ around Y, Z axis. For each shaft finite element, the coordinates are arranged in the 
vector [ ]Tiiiiiiii

e wwvv 1111
)(~

++++= ϑϑψψq . The mass, gyroscopic and stiffness finite 

element matrices )(eM , )(eG , )(eK  are derived by Lagrange´s equations using an expression for 
kinetic and potential energy of the shaft element in fixed configuration space XYZ. The rigid disc 
placed in ith node is described by the mass and gyroscopic matrices )(dM , )(dG . All these matrices 
describing shaft elements and discs are derived according to Slavik et al. (1998). 

The anisotropic support located in ith node of the shaft represents the fluid film bearing. Considering 
the linear relation between forces generated in fluid film, each support can be characterized by the 
stiffness and damping matrices ( )0ωiBK , ( )0ωiBB . Their coefficients depend on angular velocity 0ω
according to Muszynska (2005). 

2.1. Damping effects 

Considering the isotropic external damping the forces are perpendicular to the finite element surface. 
If the bending vibration is supposed then the external damping impact results from the Rayleigh 
dissipation function. The external damping in fixed coordinates XYZ is expressed by means of external 
damping matrix 
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where bE [kgm-1s-1] is external isotropic damping coefficient per unit length. 

In case of internal isotropic damping we assume that internal damping forces are induced by shaft 
deformation and are of viscous character. Therefore the internal damping forces effect could be 
expressed in the rotating coordinates xyz by means of the internal damping matrix 
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where bI[s] is coefficient of viscous internal damping, E [Pa] is Young´s modulus of elasticity and J 
[m4] is cross-section area polar moment. Note that 1S , 2S , ΦI and Φ′′I are constant coefficient 
matrices of order four derived in Byrtus et al. (2011). But the matrix (3) must be transformed from 
rotating frame xyz to the fixed frame XYZ by using a transformation matrix ( )tR  
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where ( )1111diag −−=D , ( )1111diag=E . Then the relation between a vector of 
generalized coordinates ( )te)(q̂  in rotating frame xyz and vector of generalized coordinates ( )te)(q  in 
fixed frame XYZ is ( ) ( ) ( )ttt eTe )()(ˆ qRq = , the internal damping forces in fixed frame could be 
expressed as 
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where ( ) ( ) ( )( )ttt e
I

Te
I BRBR =)(  is so-called dissipation matrix and ( ) ( ) ( )( )ttt e

I
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called circulatory matrix. It was demonstrated that for the isotropic shaft element these two matrices 
are constant in time. 

Therefore the mathematical model of the shaft element respecting damping effect in fixed frame XYZ 
could be expressed as 
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2.2. Mathematical model of a whole rotating system 
Mathematical model of the whole rotating system with bearing supports is derived in the space with 
the configuration [ ]Tiiiii wv KK ψϑ=q , therefore matrices describing the shaft element 

must be transformed from the configuration space defined by vector )(~ eq to the new configuration 
space. Then the equation of the motion could be expressed as 

                      ( ) ( )( ) ( ) ( )( ) 0qKKKqGBBBqM =+++++++ )(000 ttt BIBIE ωωω &&& , (6) 

where each matrix is composed of transformed block matrices and 0ω is an angular velocity of the 
rotation. Matrices ( )0ωBB  and ( )0ωBK are global damping and stiffness matrices of the 
hydrodynamic bearings. 

3. Application  

The model respecting damping effect was tested using the rotor supported on two hydrodynamics 
bearings. The shaft is derived into eight shaft elements and equipped with four discs (see Fig. 1). The 
shaft elements are described by length l [m], material density ρ = 7850 kgm-3, Young´s modulus of 
elasticity E = 2.1011 Pa, outer diameter D [m] and inner diameter d [m]. The rigid discs are 
characterized by mass m [kg], moment of inertia with respect to lateral axis I0 [kgm2] and moment of 
inertia with respect to axis of symmetry I [kgm2]. These parameters are written in Tab. 1. 

 
Tab. 1: Parameters of the shaft elements (on the left) and discs (on the right). 

element D [m] d [m] l [m] 
1 0.43 0 0.9 
2 0.53 0 1.12 
3 0.735 0 0.52 
4 0.735 0 0.995 
5 0.735 0 0.925 
6 0.735 0 0.52 
7 0.53 0 1.12 
8 0.43 0 0.75 

 

 
node m [kg] I0 [kgm2] I [kgm2]

1 670 78.88 39.44 
4 549 1035 517.5 
6 549 1035 517.5 
9 670 78.88 39.44 

 
Fig. 2: Stiffness and damping coefficients of hydrodynamic bearings dependent on rotating speeds n. 

The bearing stiffness and damping coefficients are approximated by cubic polynomials in dependence 
of rotating speed 4000,0∈n  rpm. see Fig. 2. 

According to Gasch & Pfützner (1980) the internal damping coefficient is set bI = 0.01 s and the 
external damping coefficient is set as bE = 0.1 kgm-1s-1. 

The eigenvalues are obtained by solving the eigenvalue problem and the Campbell diagrams 
expressing the dependence of eigenvalue imaginary parts on the rotor speed n for both systems are 
shown in Fig. 3. The eight eigenvalues with the smallest positive imaginary parts are written in Tab. 2. 
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Tab. 2: The eigenvalues with eight smallest imaginary parts corresponding with the system without 
damping effect and system considering damping effect for n=2000 rpm. 

eigenvalue bI = 0 s. bE = 0 kgm-1s-1 bI = 0.01 s. bE = 0.1 kgm-1s-1 
λ1 -2.19+3.27i -2.20+3.27i 
λ2 -0.03+8.02i -0.03+8.02i 
λ3 -1.32+20.13i -1.32+20.14i 
λ4 -0.17+71.29i -0.17+71.29i 
λ5 -0.57+335.77i -2.92+335.76i 
λ6 -0.44+395.30i -3.70+395.29i 
λ7 -0.06+627.60i -11.97+627.51i 
λ8 -0.03+739.28i -14.18+739.20i 

 
Fig. 3: Campbell diagrams for system without damping effect (on the left) and system with damping 

effect (on the right). 

4. Conclusions 

This paper presents the basic dynamic model of the rotating system supported on two hydrodynamic 
bearings respecting damping effects. The finite element approach was used and the shaft was modeled 
by means of eight shaft elements and four rigid discs are attached to the shaft in chosen nodes. The 
hydrodynamic bearings are modeled as supports with stiffness and damping coefficients depending on 
the rotating speed n.   

The analysis of the damping effects was performed for rotating speed 4000,0∈n  rpm. whereas the 
operating rotating speed is n = 2000 rpm. Based on eigenvalues corresponding to both cases of model 
see Tab. 2. it is obvious that the real parts of eigenvalues of the system with damping are smaller than 
real parts of eigenvalues of the system without damping. It was shown that external damping causes a 
stabilizing effect in the analyzed rotating speed range. On the other hand. the internal damping affects 
the eigenvalues of the system minimally. The conclusions shown in this paper are valid in case of rotor 
systems supported on hydrodynamic bearings with relatively large values of damping coefficients.      
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