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A THEORETICALLY CORRECT ALGORITHM FOR NONLINEAR
CONSTITUTIVE MATRIX OF A SHELL

I. Némec*, L. Weis"

Abstract: A theoretically correct algorithm for nonlinear constitutive matrix of shell is introduced. The
derivation starts with general formulas defining the constitutive matrices and it is applied to a specific
problem of a shell respective to material nonlinearity.
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1. Introduction

The paper starts from the basic relation defining a tensor of tangent material stiffness (e.g. Belytschko,
Liu & Moran, 2000). From this definition a theoretically correct algorithm of the tangent constitutive
matrix of a shell is derived.

2. Basic relations

Let us start from the relation for the tangent material stiffness (1), which can be applied for a wide

scale of materials, where the material modulus C is the fourth order tensor, S is the second Piola-

Kirchhoff stress tensor and E is the Green-Lagrange strain tensor.
oS

C(E)—ﬁ

)
When proceeding to the Voigt notation, we introduce the materal stiffness matrix C , the matrix of the

second Piola-Kirchhoff stress S and the matrix of the Green-Lagrange strain E . Then the equation
(3) can be rewritten as follows:

C(E|=— “
(E)=38
When a load increment is small enough then the constitutive relation (5) can be linearized.
5S=C-SE (6)
Then we can write the following relation for particular members of the constitutive matrix C:
=  OSi
Cij=—= (7
OE;

With regard to linearity of the relations (8) and (9), for determination of @ members of the constitutive
matrix we can choose an arbitrary value of OEj, then also OEj =1. Then we can easily determine
members of the constitutive matrix C as pertinent components of the stress vector S for the unit

magnitude of the strain vector E .
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Eij = 35S, (5Ej = 1)
(10)

The similar way can be used for obtaining members of the constitutive matrix of a shell. Let us define
the vector of internal forces of a shell (11), where particular internal forces are defined in a usual way
as integral factors of stress components (7).

s¥=[m, m, m, v

y Xy X
(12)

mX:IaXz dz my:Iayz dz mxy:jrxyzdz
h h h

v, =|7,, dz v, = Iryz dz
h h

”x=_[0x dz ny:_[aydz nxy=_[7xy dz
h h h

(13)

Let us define the strain vector of a shell in a usual way.

T
E(S) = |:Kx KY ny Y xz }/VZ Ex 8y yxy:|

(14)
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gx = gy = 7/xy =—*t—
oX oy oy ox

Similar relation as the equation (15) can be written also for the constitutive matrix of a shell:
o) _ oSt

N aE(S)
(16)

To obtain particular members of the constitutive matrix of a shell, similar relation as in the equation
(17) can be written:

55.(5)
(s) _ i
Cj T SE0 (18)

]

With regard to linearity of the constitutive matrix in each iteration step, particular members of the

constitutive matrix can be again determined as the pertinent components of the vector & Si(s) for unit

)

value of the strain component & Egs )

3. Algorithm of the calculation of the constitutive matrix of a shell

3.1. Layered shell element

Inasmuch as the internal forces & Si(s) corresponding to the strain & E j must be obtained by numerical

integration (Solin, Segeth & DoleZel 2004), the shell must be didvided along its thickness h into
. The

pertinent integrals can be evaluated by Gauss quadrature formula which defines the location of

layers. A layer i is determined by its thickness h_. and by the location of its central surface Z

Ir.i Ir,i
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Gaussian points Z This quadrature formula gives exact results for polynomials of the (2n - 1) -th

op.j
and lower order, where N is the number of Gaussian points in each layer.
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Fig. 1: Division of element along its thickness h into 4 layers with one Gaussian point in each layer
er,i = ng,j '

3.2. Bending and membrane members of the constitutive matrix

)

A bending and membrane members of the constitutive matrix of a shell C") are calculated from the

constitutive matrices of layers ¢, ; (11) transformed into such coordinate system in which the shell

constitutive matrix C(S) should be assembled.

T CIr,i,xxxx CIr,i,xxyy CIr,i,>(x><y
_ -1 local -1 _
cIr,i - (Tc ) cIr,i Tc - CIr,i,yyxx Clr,i,yyyy CIr,i,yyxy (19)

CIr,i,xyxx Clr,i,xyyy CIr,i,xyxy

For assemblage of the constitutive matrix C" the equation (12) shall be used. When chosing the first
(s)

member &, of the deformation vector E" equal to one, and the remaining members of this vector are

zero, then the vector of internal forces S® s equal to the first column of the constitutive matrix ct.

S(S) — C(S) E(s) (20)
(m, ] [c,, o0 0 0 0 0 0 0] [x,=1] C,,=m,
m, C,, O 0 0 0 0 0 0 0 C, =m,
m,, C,, 0 0 0 0 0 0 0 0 Cy=m,
v, C,, O 0 0 0 0 0 0 0 C, =V,
= =
v, C,, 0 0 0 0 0 0 0 0 Cs =V,
n, C, O 0 0 0 0 0 0 0 Cq =0,
n, c,, 0 0 0 0 0 0 0 0 C, =n,
ny, | [Cy O 0 0 0 0 0 ol o | Cyi=ny

This algorithm will be used for evaluating the first three and the last three columns of the constitutive

(s)

matrix C"®. The chosen vector of deformation E containing only one nonzero member i.e.

curvature k, =1 will yield the strain in the layers as follows.

glr,i,x = gx +K er,i glr,i,y = gy + Ky er,i 7/Ir,i,xy = 7/xy + ny er,i (21)

X

A constitutive matrix of a layer ¢ ; obtained from a nonlinear calculation will be multiplied by the

strain vector g, ; to obtain the pertinent stress vector.

i =€ &) (22)
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Then the stress 6, ; in each layer will be integrated related to the central surface of the shell by the

i
realtion (7). The resulting vector of the internal forces S® will be substituted into the first column of

the constitutive matrix C'* . This procedure will be repeated also for the remaining columns of the
constitutive matrix except the fourth a fifth one, which will be evaluated by a different procedure.

3.3. Shear members of the shell constitutive matrix

To complete all the members of the constitutive matrix C" it remains to determine the shear

stiffnesses C,, in the X direction and C,; in the direction.The C,, and C,, stiffnesses will be

calculated by the relations (23) that were derived from the demand of the equivalence of the virtual
work of the 3D and the 2D models.

24)
1 1

Cu= " 2 Css = h 2

IEIrixTIridf IEIriyflridT

1 S 1 .
— | dz ——— | dz
G“’J,X jElr,i,x er,i dz G"’J,V IEIr,i,y er,i dz
h h
h h

Evix> Eiriys Grix and G ; are the Young and shear modules of each layer.

4. Conclusions

The paper has shown a theoretically correct and practically useful algorithm for calculation of tangent
constitutive matrix of a shell. This algorithm is applied in the RFEM program for finite element
analysis of structures (Némec et al., 2010).
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