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Abstract:  The drag force acting on a spheroid moving perpendicularly to its axis of rotation in water 
was studied experimentally. Along the spheroid axis, which is normal to its axis of rotation, a round 
narrow hole was bored. The spheroid moved along a thin vertical thread stretched in water. A video 
system recorded the spheroid motion and the spheroid velocity was determined from the record. The drag 
force coefficient was calculated from the balance of forces acting on the spheroid. Two oblate, two 
prolate spheroids and one sphere with ratio of the axes 0.67; 0.81; 1.33; 2 and 1 (sphere), respectively, 
with approximately the same volumes, were used. The friction coefficient between the thread and 
spheroid was determined from the comparison of the experimental and calculated motions of the sphere, 
for which the drag force coefficient is known. The dependence of the drag force coefficient of the spheroid 
on the ratio of its semi-axes was obtained. 
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1. Introduction 

Spherical particle is usually used for modelling of solid particle movement in fluid (e.g., Nino & 
Garcia, 1994; Kholpanov & Ibyatov, 2005; Lukerchenko et al., 2006, 2009a,b). However, the 
influence of the particle shape on its motion in fluid can be significant. For example, in the case of 
particle saltation in a channel with rough bed, the elongated shape of the particles leads to a significant 
increase of the angular velocity (Nino & Garcia, 1998), which strongly affect numerical models. A 
spheroid is the simplest shape, which can be compared with a sphere, and it is suitable to study the 
influence of the particle elongation. 

Let the semi-axis of a spheroid that corresponds to the axis of rotation (axis of symmetry) is a0 and the 
semi-axis that is normal to the axis of rotation, i.e. the equatorial radius, is b0 (Fig. 1). If the spheroid 
moves slowly in fluid without rotation (i.e for Stokes conditions, Re<<1), its drag force can be 
calculated using the drag force components parallel to the axis of rotation F|| and perpendicularly to 
this axis F┴ (Happel, 1973). The correlations for the drag force coefficients C|| and C┴ that are 
dimensionless analogues of the drag force components F|| and F┴ were derived for Stokes flow 
theoretically (e.g., Happel, 1973; Clift et al., 2005). Unfortunately, there are not available relationship 
for the drag force coefficients C|| and C┴ for different ratios of the spheroid semi-axes E=a0 / b0 when 
Reynolds number Re>>1. Experimental results for axisymmetric motion (F┴ = 0) outside the Stokes 
range appear to be limited to oblate spheroids (E < 1) for which is the preferred orientation (Clift et 
al., 2005). List et al. (1973) studied experimentally the drag force acting on the oblate spheroids with 
axis ratios 0.5 < E < 0.79 over a range of Reynolds numbers from 40 000 to 400 000 at various 
inclination angles of the fluid flow.  

The present paper deals with an experimental evaluation of the drag force coefficient C┴ for the semi-
axes ratio E ranging from 0.67 to 2 (Tab. 1) and Re ~ 10 000. 
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                                                                 Tab. 1: Parameters of spheroids. 

 

          Fig. 1: Test spheroid. 

 

2. Experimental procedure 

The experiments were carried out in a rectangular glass vessel 0.780 m long, 0.580 m wide, and 0.980 
m high. The water depth was about 0.900 m.  

The spheroid masses were measured using the electronic balance SARTORIUS BA2100S; the 
maximum absolute error was 10-5 kg. 

The five Plexiglas models of spheroid were used. Along one of the equatorial diameters, i.e. normally 
to the axis of rotation, a round narrow hole of diameter 1 mm was bored. The spheroid moved along a 
thin thread of diameter 0.1 mm that was passed through the hole and was stretched in water vertically.  

The measurement of spheroids sedimentation start just under the water surface in order to avoid air 
entrainment end the effect of the water surface on its motion. 

The spheroid movement in water was recorded using the digital video camera NanoSenze MKIII+ 
with frequency up to 1000 frames per second. The spheroid terminal fall velocity was determined by 
evaluation of the video record. The drag force coefficient was calculated using the balance of forces 
acting on the spheroid. 

3. Mathematical model 

The following forces act on the spheroid of mass m moving steady in water along the vertical thread: 
gravity force Fg = mg=ρs Ωg, Archimedean force FA = ρΩg, friction force Ff = kf l and drag force 
Fd = C┴ S ρV 2/2, where ρs is the spheroid density, ρ is the water density, g is the gravitational 
acceleration. Ω = 4/3 πa0 b0

2 is the spheroid volume, kf is the friction coefficient, l = 2b0 is the length of 
the hole in spheroid, V is the fall velocity, and S = π a0 b0 is the spheroid cross-section area 
perpendicular to direction of movement. The force Ff  due to the mutual friction between the spheroid 
and the thread is supposed to be proportional to the length of the hole l. 

The balance of the forces gives: 

                                                 22 / 2.f 0 0 0m g = ρΩ g + k b +C π a b ρV⊥                                          (1) 

For the each spheroid, Eq. (1) includes two unknowns: the friction coefficient kf and the drag force 
coefficient C┴ . However, for the sphere, the drag force coefficient is known and the Eq. (1) can be 
used for the definition of the friction coefficient kf. 

4. Results 

The spheroid volume can be specified in two ways: (I) using the formula for the spheroid volume  
Ω0 = 4/3 πa0 b0

2 and, (II) using the values of the Archimedean force ΩA = FA / ρg. The Archimedean 
force was measured the following way. A beaker filled with water was put on the balance, which was 
zeroed. The spheroid was submerged into the water in the beaker without touching the beaker wall and 
bed. The balance shows the Archimedean force. For the used balance the accuracy of the volume 
measurement for this method is 10-8 m3. The calculated and measured data in Tab. 2 shows that the 
spheroid production error (shape inaccurancy) was less than 5%. 

For the drag force coefficient of the sphere the following correlation was used (Nino&Garcia, 1994): 

No. a0, mm b0, mm E=a0 / b0  

1 12.6 18.9 0.67 Oblate 
spheroids 2 14.6 18.0 0.81 

3 16.4 16.4 1.0 Sphere 

4 20.0 15.0 1.33 Prolate 
spheroids 5 26.2 13.1 2.0 
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where Re = 2rV/ν is the Reynolds number, r=a0 =b0 is the sphere radius, ν is the water kinematical 
viscosity. The value of the drag force coefficient for the sphere of measured size is C┴ = Cd0 = 0.445. 
The fall velocity is 0.35 m/s. The value of the friction coefficient from the Eq. (1) is kf = 0.353 N/m. 

Tab. 2: The spheroid production accuracy. 

No. E=a0 / b0 Ω0 · 10-5 
m3 

ΩA · 10-5 
m3 

Ω0 – ΩA)/ ΩA 

% 

1 0.67 1.885 1.889 0.2 

2 0.81 1.970 1.883 4.6 

3 1.0 1.831 1.831 0.0 

4 1.33 1.885 1.850 1.9 

5 2.0 1.883 1.871 0.6 

The values of the drag force coefficient C┴ for the oblate and prolate spheroids were calculated using 
Eq. (1) and they are presented in Tab. 3. The equivalent Reynolds number is Ree = 2re V/ν, where the 
equivalent radius re = (a0 b0) 0. 5 is the radius of the sphere with the same midlength section area. 

Tab. 3: The drag force coefficients of the spheroids. 

No. E=a0 / b0 V, m/s Ree C┴ 

1 0.67 0.42 13 000 0.34 

2 0.81 0.38 12 400 0.39 

3 1.0 0.35 11 400 0.45 

4 1.33 0.31 10 600 0.55 

5 2.0 0.26 9 800 0.72 

The dependence of the drag force coefficient C┴ on the ratio of the spheroid semi-axes E = a0 / b0   is 
depicted in Fig. 2. This dependence matches well with the correlation: 

                                                                      0.7 ,d0C = C E⊥                                                                   (3) 

where Cd0 = 0.445 is the drag force coefficient of the sphere in turbulent regime.  

 

Fig. 2: The dependence of the spheroid drag force coefficient C┴  
on the ratio of the spheroid semi-axes E. 
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5. Conclusions 

The dependence of the drag force coefficient of the spheroids moving perpendicularly to the axis of 
rotation on the spheroid semi-axes ratio were determined for the spheroid semi-axes ratio ranging from 
0.67 to 2. The values of the Reynolds number are in the range from 9 800 to 13 000. The dependence 
corresponds well with the experimental data and it can be used in the numerical models of the particle 
movement in fluid. The experimental method can be used for investigation of the drag force 
coefficients of spheroids as well as the bodies with more complex shape. 
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