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Abstract: The paper is focused on analysis of changes of eigenfrequencies due to local damage in beam 
buckling problem. The aim is determination of suitable initial parameters for consequent inverse 
analysis. Relative changes of the first five eigenfrequencies when local damage in individual parts of the 
beam occurs were studied together with influence of axial force size to those changes. Even with the 
knowledge of significant simplification, such a task can serves as a prefiguration for damage 
identification of pre-stressed structures. 
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1. Introduction 

In the field of damage identification using structural health monitoring data (SHM, ambient vibration 
monitoring) the analysis of change of modal properties due to damage is important (Wenzel & Pichler, 
2005; Lehký & Novák, 2009). The task of damage identification using vibration data is based on the 
premise that damaged structure has smaller stiffness in some parts – and this difference will affect 
vibration (modal properties). The comparison of vibration of virgin (undamaged) structure and 
damaged structure can be then used for the detection of damaged parts (localization of damage). 
Integral part of research in this field is the study of modal properties and analysis of its applicability 
for damage identification, see e.g. Frantík et al. (2007) for numerical analyses and Lehký & Novák 
(2009) for experimental analysis.  

In the paper, beam buckling problem from the damage point of view is studied. Such a task can serve 
as a prefiguration for pre-stressed bridges. Limiting factor for damage identification using changes of 
modal properties are their relatively small values compared to the size of the damage. The aim of the 
study is to find out if changes in vibration are bigger with higher pre-stressing of a structure and if 
there is a change in dominancy of eigenfrequencies changes in individual damaged parts. 

2. Computational model 

Computational model was created using physical discretization method implemented in application 
FyDiK (Frantík, 2009). The beam is divided into a specific number of elements with the same length. 
Every element has an inner normal spring. The elements are connected together by hinges with 
rotational springs, see Fig. 1. Both types of springs are considered to be linear, but large deflections 
are taken into account in the mathematical representation. For the sake of simplicity the mass of the 
beam is concentrated in hinges. Model is then formulated as a nonlinear dynamical system. 

In our study the model of a wooden beam with 20 elements is used. The beam has length l = 80 cm, 
mass m = 84 g, normal stiffness EA = 1.26·106 N, bending stiffness EI = 2.625 Nm2. According to 
analytical solution (Brepta a kol., 1994): 
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the unloaded beam should have following bending eigenfrequencies f1 = 12.27 Hz, f2 = 49.09 Hz, 
f3 = 110.45 Hz, f4 = 196.35 Hz, f5 = 306.80 Hz. For the comparison, model (with 20 elements) gives 
f1 = 12.25 Hz, f2 = 48.69 Hz, f3 = 108.41 Hz, f4 = 189.97 Hz, f5 = 291.35 Hz. 

 
Fig. 1: Discrete model of a beam with rotational springs. 

3. Parametric study  

Changes of modal properties were studied on simply supported beam without imperfection and pre-
loaded by axial force. The aim of this study was to find out which eigenfrequencies are affected by 
change of stiffness in individual location on the beam. This kind of information is important for 
damage identification using SHM data. Let’s mention that evaluation of eigenfrequencies (especially 
the higher ones) from experiment is not an easy task. For study purposes, first five eigenfrequencies 
were taken into account. Ratio between the first one and the fifth one is approximately 1:25. As 
mentioned in chapter 2, bending of the beam is realized by 19 rotational springs with stiffness  
k1, k2, …, k19 corresponding to bending stiffness EI1 to EI19. A damage of beam in individual location 
is modeled by decrease of bending stiffness down to one tenth of its nominal value. Such damages 
were applied step by step for all parts (only one part was damaged at each time). 

 
Fig. 2: Scheme of computational model of simply supported beam. 

3.1. Unloaded beam 

First study was performed on a beam without axial force. Figure 3a shows the relative changes of the 
first eigenfrequency f1 as a function of the level of damage and position of damage. It can be seen that 
changes of eigenfrequency correspond in some sense to the first mode shape of the beam – position of 
extreme value corresponds to position of amplitude of mode shape. The same results were also 
obtained for higher eigenfrequencies. A distinctive change of eigenfrequencies (more than 5 %) can be 
detected only for higher levels of damage (more than 50 % of nominal stiffness). The damage in nodes 
of mode shape will not influence corresponding eigenfrequency. It is obvious that for efficient damage 
identification a higher number of eigenfrequencies must be taken into account because the absence of 
frequency change in certain part of the structure (node of mode shape) is then compensated by the 
change of another frequency. That can be seen in Fig.3b which shows which eigenfrequency has 
changed the most due to damage in certain part of the beam. In the middle part of the beam (parts 7-
13) the first eigenfrequency is dominant. But in outer parts its influence decreases and higher 
eigenfrequencies become more important. 

3.2. Pre-loaded beam 

The main aim of the study is to analyze an influence of axial (pre-stressing) force on eigenfrequency 
change of the beam due to damage. With increasing axial force, eigenfrequencies are decreasing for 
undamaged as well as damaged beam. Fig.4a shows such decrease for one particular case where 
middle part of the beam was damage to one half of the nominal stiffness. Critical force of that case is 
36.65 N, for undamaged beam it is 40.40 N. In case of damaged beam, decrease of all 
eigenfrequencies is faster compared to undamaged beam (dashed line vs. solid line in Fig.4a). In the 
figure, there are no lines of the second and the fourth eigenfrequencies of damaged beam. The reason 
is that damage is located in the node of both corresponding mode shapes and therefore those 
eigenfrequencies are not affected by damage.  

360



 
 

a) 

 

b) 

Fig. 3: a) Relative changes of the first eigenfrequency for different levels of stiffness in individual 
damaged parts of unloaded beam; b) division of unloaded beam to regions with maximum relative 

changes of each eigenfrequency. 

Fig. 4b shows relationship between axial force and relative changes of eigenfrequencies. It is obvious 
that with increasing force (pre-stressing) a relative changes of eigenfrequencies are being increased 
too. Especially change of the first eigenfrequency is very strong. Higher eigenfrequencies are less 
affected. Again, the second and the fourth eigenfrequencies are not depicted in the figure since their 
values are not influenced by damage of the middle part of the beam. More detailed picture of 
dependence of axial force on eigenfrequencies changes caused by damage of individual parts of the 
beam to 50% of its nominal value gives Fig. 5. Fig. 5a shows relative changes of the first 
eigenfrequency which increases hand by hand with axial force. Fig.5b shows relative changes of the 
second eigenfrequency. Changes increase again together with axial force but not so quickly as for the 
first eigenfrequency. One can also see zero change of the second eigenfrequency if the middle part 
(No. 10) of the beam is damaged – that for any size of axial force. 

In Fig. 6a there are relative changes of the first eigenfrequency for different levels of damage and axial 
force F = 30 N. Increase of eigenfrequency changes is distinctive compared to unloaded beam (see 
Fig.3a). It is valid for lower levels of damage too. In the figure, one can see that critical forces for 
cases where damage of parts close to middle of the beam is relatively large (stiffness is reduced to 
20% of its nominal size) is lower than axial force F = 30 N. Fig.6b shows regions of beam loaded by 
axial force F = 20 N where each eigenfrequency is dominant (relative change of that eigenfrequency 
outweigh the others). In comparison with unloaded beam a region where the first eigenfrequency is 
dominant is wider for pre-loaded beam. 

a) 

 

b) 

Fig. 4: a) Changes of eigenfrequencies with increase of axial force for undamaged and damaged 
beam; b) relative changes of eigenfrequenies due to damage (in both graphs the damage is 

represented by decrease of stiffness of middle part No. 10 to 50% of nominal stiffness). 
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a) 

 

b) 

Fig. 5: Relative changes of (a) first and (b) second eigenfrequency caused by damage to 50% of 
nominal stiffness of individual damaged parts and their dependence on increase of axial force. 

a) 

 

b) 

Fig. 6 a) Relative changes of the first eigenfrequency for different levels of stiffness in individual 
damaged parts of beam pre-loaded by axial force 30 N; b) division of pre-loaded beam (20 N) to 

regions with maximum relative changes of each eigenfrequency. 

4. Conclusions 

A dominancy of changes of particular eigenfrequencies when damage in individual parts of the 
buckled beam occurs was studied together with an influence of axial force size to those changes. Even 
with the knowledge of significant simplification, such a task can serves as a prefiguration for damage 
identification of pre-stressed structures. Results show thanks to pre-stressing there are more significant 
changes of modal properties due to damage. It will be positive for damage identification using SHM 
data. Spreading region of dominancy of the first eigenfrequency due to increasing axial force is also 
positive since the relative changes of frequency are bigger in comparison with higher ones. 
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