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Abstract: In this paper a method for determination of shear stress distribution over arbitrary cross 
section is described. Cross section is loaded by any combination of shear and torsion. Other inner forces 
are not considered at this presented method. PDE are formulated for this problem, which are 
transformed by variational principle to the deformational variant of the finite element method. The 
solution of overall internal forces and stiffness characteristic of cross section including plasticity for 
using in a beam element model is suggested in this paper. 
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1. Introduction 

The motivation for the presented work is development of beam element with material nonlinearity. At 
the present time, a beam element with material nonlinearity for uniaxial stress is implemented in many 
of commercial FEM softwares. Its formulation is simple. Cross section is divided into particular 
tensile fibers with plasticity conditions. This element well describes plastic properties of cross section 
at tension and bending, but it does not respect the effect of shear and torsion. But in case of short or 
twisted beam it cannot be omitted in respect to their real plasticity behavior.   

Formulation of beam element is based on stress distribution over the cross section and subsequent 
behavior of the cross section in response to beam deformation. Only nonlinear material behavior of 
cross section in response to a twist and skewness is assumed and condition of free warping is 
supposed. Other loads components are not considered. This simplified formulation is presented in this 
paper.  

Deformation variant of FEM is used for solution of behavior of shear stress over cross section. The 
arguments of this use are discussed at the end of the paper. The primary function that is investigated is 
cross section warping and this problem is transformed by variational methods on solution by finite 
element method. The method is founded on the article by Gruttmann & Wagner (2001), where cross 
sections plasticity capacity in torsion is discussed. This method is extended to general combination of 
shear loading of cross section with possibility of finding out tangential stiffness of cross section 
including plasticity. 

2. Method 

For solution of shear loading of cross section the following simplifying assumptions are accepted: 
− Beam is straight, prismatic and it is loaded only by shear and torsion. 
− Overall rotations about y and z axis and displacement of cross section in beam axis x are zeros.  
− On the basis of the assumptions 1. and 2. it can be stated that there are only shear strains  γxy , γxz 

and thus there is shear stress τxy , τxz. in the cross section. The other members of stress and strain 
tensors are zeros. 

− Cross section warping is free. 
− Deformations are small. 
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Fig. 1: Axis convention. 
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On the basis of the abovementioned assumptions, kinematic conditions for cross section deformation 
could be written as follows: 
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Where w(y,z) is the primarily searched warping function and functions Φy(y,z), Φz(y,z) are the 
functions of  transversal contraction, which are caused by a axial stress. For shear strains over cross 
section it is valid: 
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Because relation between bending moment and shear force is dM/dx = V, derivations of functions 
Φy(y,z), Φz(y,z)  for real materials will be always nonzero. The impact of this effect on shear stress 
distribution for linear material is discussed for example in Gruttmann, Sauer & Wagner (1999). This 
effect is not considered in the presented me od e following assumption is accepted: th  and th
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As further assumption the following cons in o tion and displacement are accepted: tra s for verall rota
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Equilibrium equations have to be satisfied at every point of the cross section. Since external load does 
not have influence on the cross section, shear stresses have to be tangent to cross section boundary. In 
respect of assumption of the other zero elements of stress tensor the following boundary problem can 
be formulated. 
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Variational principle is used and the equation (5) is multiplied by test function and integrated across 
the area of the cross section Ω t of variational principle. : The result has to be equal to zero in respec
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Equation (6) is integrated by parts. 
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From the boundary condition (5) it is obvious that the value of the line closed integral in (7) is zero 
and final integral equation can be written: 
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According to classic formulation of finite element method, the test function is assumed equal to the 
base function of finite element. In the following examples linear triangle elements and isoparametric 
elements are used.  Formation of element and methods of integration are not described here, but they 
can be found for example in Němec l k & Taylor (2005).  et a . (2010) or Zien iewicz 
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Ni are base functions, E is unit matrix and wi are values of warping function at a grid of the mesh. 
From (9) it can be written: 
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Shear strains on elements can be form e n th ) : ulat d o e basis of (2
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where yi and zi are coordinates of mesh grids. On the basis of this the problem (8) can be transformed 
into system of nonlinear equations F with unknown values of warping wi at mesh grid. 
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A nonlinear relationship between shear stress and shear strain for isotropic material with HMH plastic 
condition is presented for example. However this is not a subject of this paper and using of the other 
formulations of plasticity d d l  i a 006).  is open an iscussed for examp e n Ch krabarty (2
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Constraints (4) can be rewritten by using finite element formulation: 
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Newton method is used for solution of system of nonlinear equations (12). For this method it is 
necessary to determinate a tange  st n s  nt iff es  matrix: 
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Final iteration method for finding of warping at mesh grid is following with respect of constraints 
(15): 
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After this solution w m g al forces can be 
calculated in resp e

 of warping function  the last step re ains. Resultin intern
ons  to the deformations loading θ:  
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Tangential stiffness of cross section, which is necessary for formulation of beam element, is given by 
the following equation:  
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3. Example  

The described method is illustrated by the following examples. Pure torsion of square cross section in 
plasticity state is shown in the left figure below. The color map shows intensity of shear stress and the 
vectors are directions of shear stress. Some combination of shear and torque of nonsymmetrical C 
profile is shown in the figure at the right side. This figure shows plastic strain as the color map and 
shear stress direction as vectors. 

  
Fig. 2: Examples of solutions. 

4. Conclusions 

With regard to the use of deformation variant of the FEM it is not a problem to solve cross section 
with multiple internal loops without special constraints. Special conditions for the origin point of cross 
sections coordinate system are not required. The described method is directly applicable to simulation 
of plasticity free torsion. As it has already been discussed, shear does not occur without bending and 
due to this shear loading would be modeled with axial stress distribution. The condition of free 
warping is oversimplified for shear loading too. Nevertheless, this method is a contribution for 
formulation of a model of full plastic beam element. 
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