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Abstract: The paper presents both hardware and software means used to develop a scalable low/middle 
level control system for the autonomous mobile robot Advee. Brief description of chosen hardware 
resources is given and use of a Linux-based operating system as a foundation of a soft real-time control 
system is discussed as well as the choice of other vital software components, e.g. inter-process 
communication mechanism. Described system has been fully implemented and successfully exploited in 
operation. 
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1. Introduction 

Developing any new technical work brings many conceptual decisions – especially when the work is 
an autonomous mobile robot. But only a few of these dilemmas can be solved at the beginning of 
development – and design of the “brain”, the control system, is not an exception. It is therefore very 
important to find the right trade-off between abstraction and concreteness in design that determines 
proportion between the ease of initial development and possibility of future modifications. Modularity 
mentioned in paper title is one of parameters that strongly influence adaptability of the system to 
unexpected eventualities. In the case of described control system it is achieved in terms of both 
hardware and software means – hardware components are interconnected using shared busses that 
allow for adding and replacing individual components as long as defined communication interface is 
abided. The principle of software modularity is exactly the same – the modules can be added or 
reimplemented on condition of maintaining of specified interfaces. 

A rich variety of control system designs can be found in the field of mobile robotics – ranging from 
simpler libraries aimed mainly on communication among individual components of the system to 
complex frameworks including a lot more. To the former group we can count for example IPC 
(Simmons & James, 2001) or LCM (Huang et al., 2010) that provide purely module interconnection 
and do not constrain any other aspect of the system architecture. On the other side, frameworks like 
Player/Stage (Gerkey et al., 2003) or MRDS (Microsoft, 2011) offer much more than just 
communication (e.g. a complete simulation environment including an artificial 3D world model) but 
also force the system to more predetermined shape. The system designers must then decide whether 
the complex frameworks bring more benefits than limitations and eventually exploit one of simpler 
packages – as this paper shows. 

2. Hardware systems 

The described control platform hardware consists of two main parts – the master single-board 
computer (SBC) and the slave components including sensors, actuators and auxiliary devices (power 
units etc.). A basic structure of hardware means in conjunction with software modules is in Fig. 1. 
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Fig. 1: Simplified hardware and software modules scheme. 

2.1. Master computer 

There were several aspects essential in the master computer selection process: 
− industrial-grade ruggedness needed to lay solid foundations of overall control system reliability 

and robustness in harsh conditions, 
− communication busses support necessary to interface peripheral devices (CAN-bus, EIA-485 

etc.), 
− sufficient computational power to run simple low-level data manipulation modules as well as 

more complex middle-level data processing. 

All these features are implemented by the Technologic Systems’ TS-7800 single-board computer 
which has been chosen to host low- and middle-level software equipment. 

2.2. Sensors and actuators, auxiliary systems 

Hardware components other than computers are a mixture of industrially used devices and custom 
developed modules. The sensory equipment is formed by sixteen ultrasonic range finders providing 
information on near surrounding of the robot and incremental rotary encoders for odometry. Sensors 
are polled for data using EIA-485 communication bus. Motion of the robot is handled by a driving 
motor and a steering motor, both industrially graded and controlled over CAN-bus. Last but not least, 
there is a system of power supply and switch modules that provide power to individual components of 
the robot. Control over these hardware modules (and thereby boot-up and halting sequence of the 
whole robot) is taken by a separate module communicating with the Linux SBC through EIA-422 link. 

3. Low- and middle-level software means 

Overall software equipment of the robot is divided into three layers: 
− the low level provides interaction with hardware devices described in previous chapters – 

basically it translates device-specific data into standard inter-modular messages and vice versa, 
− the middle level implements robot state estimation and path planning, 
− the high level cares handles user interaction. 
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This paper deals with the two lower layers. Both these layers are hosted on the Linux single-board 
computer although thanks to used inter-module communication mechanism can be run on separate 
computers and even under different operating systems without any change of communication-related 
code. The use of Linux-based operating system was clear from the beginning – due to its high 
modularity it can be run in a variety of forms ranging from small embedded applications to 
multiprocessor supercomputers. The TS-7800 SBC is primarily designed to operate in conjunction 
with Linux and the source code of almost all custom hardware drivers is published by the 
manufacturer which leads to simple adaptability to concrete needs of the application and feasibility of 
fixing potential errors in implementation (own experience – problems with 9-bit serial port mode). 

Every piece of developed software functionality is a part of some module – an independent process 
communicating with other modules using hereinafter described mechanisms. 

3.1. Inter-module communication 

Inter-module communication mechanism (or generally inter-process communication, IPC) belongs to 
the most important parts of the system. There are several roles that such mechanism should be playing: 

− define unambiguous interface between modules 

− provide high-throughput and minimal-latency communication channel 

− support multiple platforms – at least Linux and Windows, C and C#.NET 

A number of systems that solve these requirements exist – differing in the basic paradigm (client-
server vs. publisher-subscriber), complexity (encapsulating more IPC methods, data marshalling1 etc.) 
or operating system/programming language support. A good comparison of several popular IPC 
libraries targeted for use in robotics is provided in (Huang et al., 2009). 

As already stated, whole software equipment of the robot is spread over minimally two computers. 
This fact disqualifies many traditional IPC methods as for example shared memory, files or pipes. The 
computers are interconnected through Ethernet and solution based on the standard TCP/IP protocol 
suite seems to fit well. The next decision after filtering out unsuitable mechanisms is conceptual – 
choosing the paradigm. Considering that most of the data flowing through the robot is of periodic 
nature, the publisher-subscriber model suits better. It can be implemented as “push” or “pull” – the 
“push” mechanism delivers data instantly while the “pull” method uses clients asking periodically for 
any new data. To ensure lowest possible latency, “push” method has to be used. Unambiguity of the 
communication between different interface implementations is best achievable using dedicated 
message definition files and programming language specific generators of message-related code 
(marshalling, un-marshalling, publishing etc.). 

Having all these demands in mind, minimalistic yet powerful LCM (Huang et al., 2009; Huang et al., 
2010) has been chosen as an optimal mechanism for message passing in Advee. 

3.1.1. LCM: Lightweight Communications and Marshalling 

LCM is a set of libraries developed originally by the MIT DARPA Urban Challenge Team for their 
autonomous vehicle Talos. It covered all requirements except for the .NET framework support – this 
minor flaw was solved by creating the lcm-dotnet port which has been added to the project. There is 
now a binding for C/C++, Java, Python, MATLAB and C# what makes it extremely flexible – users 
can for example test production code in C/C++ or Java in MATLAB simulation environment. LCM is 
composed of three main functional blocks: 

− message definition using a C-like definition language that can be compiled into language-native 
message support files using the lcm-gen tool 

− message marshalling/un-marshalling – conversion between native and byte representation with 
defined endianness and runtime type safety checking 

− communication itself based on UDP multicast 

 
1 marshalling means encoding the message into a byte array sendable over the network 
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3.1.2. Standard module interface 

On the top of LCM there are a few standard messages defined that each module has to implement – an 
error reporting message and module state setting and reporting messages. State of the module can take 
one of globally defined states (INIT, RUN, PAUSE, STOP, ERROR and TERMINATE) that form a 
state machine common to all modules. This allows using a watchdog module that guards other 
modules from misbehavior (it can e.g. restart an unresponsive module). 

3.2. Remote diagnostics and simulation support 

Inherent feature of the LCM’s transport layer (UDP multicast) is that virtually unlimited number of 
recipients can subscribe to messages from outside of the system without any negative impact upon the 
system. It is then easy to implement a non-obtrusive diagnostic tool that can monitor system modules 
and visualize important data. Currently there are three separate diagnostic applications: for Linux 
console, Android OS and Windows/.NET, each with slightly different usage. A communication logger 
is also implemented simply by listening to all messages and writing them to a file. 

It is possible to replace any module by its simulation equivalent with the same interface without letting 
know the rest of the system. This is used to emulate outer environment of the robot by replacing the 
low layer (both software and hardware) by a SIMLIB-based (Peringer, 2010) chassis simulator that 
runs a dynamic model of the robot in a given artificial world. 

4. Practical experiences from robot operation 

In general, presented control system architecture together with custom diagnostic tools proved to be 
flexible enough to allow software reorganizations during Advee’s development and highly reliable in 
operation enabling commercial utilization of the robot. LCM as the backbone of the system fits the 
demands very well, although there are some difficulties related to UDP multicast implementation on 
Android OS (but this is related to diagnostics only). Communication latencies are imperceptible. 

5. Conclusions 

Unified modular architecture with shared communication mechanism brings many benefits including 
simple system monitoring/diagnostics, simulation and testing using unmodified production code. 
Scalability is given both by the ease to add more modules (for example interfacing a new sensor) and 
by the ability to spread individual modules to more computers without changing single line of code. 
Because every module runs as a separate process, the robustness of the whole system is not threatened 
by individual module instability. The qualities of presented approach were verified during over 100 
hours of production operation. 
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