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Abstract: This article deal with problems of cracks in bodies with bimaterial interface. The stress and 
displacement near the front of crack located at the interface between two orthotropic materials is 
analyzed both analytically and numerically using FEM. Analytical description of the singular stress field 
and displacements is obtained using the anisotropic generalized complex potentials of plane elasticity. 
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1. Introduction 

The problem of a crack propagating along an interface between two materials is of great importance to 
industry. With increasing application of composite materials consisting of long fibre reinforced 
composite layers in different directions there is growing interest into the understanding of interface 
fracture between two orthotropic materials. To this end, accurate and efficient methods are required 
for determining the stress and displacement fields in the neighbourhood of crack tip. Before 
proceeding, relevant concepts related to interface cracks in orthotropic bimaterials are presented.  

2. Fracture mechanics of interface cracks between two orthotropic materials in plane strain 

Plane strain deformation can be treated by a change of compliances of an orthotropic material sij as 
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Using the newly defined material parameter ( )2/66122211 sssss ′+′±′′=± , the real Barnett-Lothe 
tensors L and S can be expressed following Ting (1996) such as  
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Further, it is convenient to introduce a symmetric, positive definite matrix D and a symmetric matrix 
W defined by 
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where subscripts 1 and 2 refer to the material 1 and 2 respectively. 

The in-plane stresses in the neighbourhood of a crack tip at an interface are given by 
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where i,j =1,2, the complex stress intensity factor K=K1+iK2 and the superscript (1) and (2) are related 
to the real and imaginary parts of Kriε.  ε is referred to as the oscillatory index defined by 

 ( )ββπε −+= 11ln21 , (5) 

where β is the generalised Dundurs parameter 2211DDw−=β . The complex stress intensity factor 
K in Eq. (4) exhibits three principal drawbacks–it contains the logarithm of length, its physical 
dimension depends on ε and the phase angle arg(K) depends on the used length unit. To remove these 
drawbacks a reference length l is usually introduced which defines the new complex stress intensity 
factor iK Kl ε=

)
 .The subsequent description of the singular elastic field employs the dimensionless 

matrix R(c) which is defined as a function of complex number c (see Mantic (2004))  
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and the traction ahead of crack along the interface are expressed for r→0 as: 
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while the crack face displacements in the vicinity of the crack tip are found to be 
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The phase angle of mode mixity ψ is defined as follows:  
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3. Conservative integral 

The reciprocal theorem of elastostatics states that in the absence of body forces and residual stresses 
the following integral is path independent 

 ( ) ( ) ( )( ), ij i j ij i jn u n u dsσ σΓ′ ′ ′Ψ = ⋅ − ⋅∫u u u u , (10) 

where Γ is any contour surrounding the crack tip and u, u’ are two admissible displacement fields and 
( )ijσ u , ( )ij ′σ u  are the corresponding stress fields. Hence 
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For the path far from the crack tip, the unprimed field is obtained from solution to the problem 
numerically by FE, for example. Along the vanishingly small path, the unprimed field is the singular 
eigensolution to the crack problem given in Eq.(7) and (8). The primed solution is chosen so that this 
integral identically yields the sought stress intensity factor. The primed solution (the auxiliary 
solution) corresponds to the singular eigensolution with the eigenvalue -1/2-iε for the displacement 
field. It has unbounded energy near the crack tip and thus corresponds to some concentrated source at 
the crack tip. It is a mathematical tool which allows extracting asymptotic coefficient terms from the 
complete exact solution. The generic form of the auxiliary traction vector t’ acting along the contour Γ 
was derived as follows 
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where I stands for unit matrix, z =x+μy, where μ is a complex characteristic material number with 
positive imaginary part, w’ is the complex eigenvector, k1 is a complex constant, and H is the 
bimaterial matrix for two orthotropic materials with aligned principal axes  
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whose components can be found in Suo (1990). 

4. Numerical results 

Bimaterial orthotropic strip subjected to tensile loading along the boundary parallel to the interface 
with an edge interface crack was modelled by FE with the system ANSYS. The material properties are 
listed in the Tab. 1. The phase angle of mode mixity ψk was calculated from Eq. (9) for l = 1 mm 
providing the value ψk = -0.178 rad. The angular dependence of analytically obtained singular field 
along a circular contour surrounding the crack tip was compared with the numerically obtained field at 
r = 1 mm using a very fine mesh. 

Tab. 1: Elastic properties of the orthotropic bimaterial strip and corresponding values of Dundurs’ 
parameters α, β. 

The angular parts of the asymptotic stress-displacement field are plotted as functions of the polar angle 
θ for several values of the phase angle of mode mixity in Figs. 1 - 5.  

  

Fig. 1: Asymptotic stress σxx along the circular 
path for several values of the phase angle ψk. 

Fig. 2: Asymptotic stress σxy along the circular 
path for several values of the phase angle ψk. 

 

Fig. 3: Asymptotic stress σyy along the circular 
path for several values of the phase angle ψk.

Fig. 4: Asymptotic displacement ux for several 
values of the phase angle ψk. 

 EL  
[GPa] 

ET 
[GPa]

EZ 
[GPa] 

νTZ νZL νTL 
GTZ  

[GPa]
GZL  

[GPa]
GTL  

[GPa] 
α β 

Mat 1 200 80 80 0.3 0.3 0.3 30 30 30 -
0.1193 0.1024 

Mat 2 50 150 150 0.3 0.3 0.3 30 30 30 

105



 

Fig. 5: Asymptotic displacement uy for several values of the phase angle ψk. 

It is clearly seen that the stress components σyy and the displacement components uy depend only very 
little on the phase angle.  

 
Fig. 6: FE solution to the stress-displacement field near the crack tip. 

5. Conclusion 

The stress field and the displacement field, calculated by FEM at the distance r = 1 mm from the crack 
tip is shown in Fig. 6. Observe that angular dependences of all quantities perfectly match with the 
analytical singular solutions. It means that the domain of dominance of the singular solution is of order 
of 1 mm for the examined specimen/crack configuration. The auxiliary solution defined in Eq. (12) 
was also evaluated and substituted into the conservative integral in Eq. (10), which enables us to 
calculate the real and imaginary part of the complex stress intensity factor. Further results will be 
presented at the conference.  
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