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DEPTH INCREMENT DISTRIBUTION FOR INTEGRAL EQUATION 
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Abstract: The ring-core method is the semi-destructive experimental method. Correctly determined and 
properly used calibration or relaxation factors for the residual stress measurement by the ring-core 
method are essential. Knowledge of their dependence on the geometric changes of the ring-groove and on 
the disposition of the residual state of stress through the depth of metallic material gives results, 
correspond of theirs appropriate application. This paper is focused on the evaluation of calibration 
factors aij and bij, necessary for the residual state of stress determination by the integral equation method. 
The finite element method is used for simulation of the residual state of stress and to calculate relieved 
strains on the top of the core. Three types of the depth increment distribution are studied, i.e. constant, 
increasing and optimized depth increment distribution, which is commonly used. 
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1. Introduction 

The ring-core method (RCM) is a semi-destructive experimental method used for the evaluation of 
homogeneous and non-homogeneous residual stresses, acting over the depth of drilled core. Therefore, 
the specimen is not totally destroyed during measurement and it could be used for further application 
in many cases.  

In this paper, the most suitable mathematical theory to evaluate non-uniform residual stress fields, 
which is the integral equation method (IEM), is discussed. This method overcomes typical drawbacks 
of the incremental strain method (ISM), which lead to incorrect results, where a steep gradient of 
residual state of stress occurs. The incremental strain method assumes that the measured deformations 
dεa, dεb, and dεc are functions only of the residual stresses, acting in the current depth z of the drilled 
groove and they do not depend on the previous increments dz, including another residual stresses. 
More information about the ISM could be found in papers Civín & Vlk (2010). Anyway, relieved 
strains do not depend only on the stress acting within the drilled layer and its position, but also on the 
geometric changes of the ring groove during deepening. These two factors are taken into account by 
the integral equation method, which has been particularly developed for the practical use by Schajer.  

The IEM assumes that strain relaxation, correspond to the particular depth of drilled groove, is 
superposition of all deformations caused by partial residual stresses, acting within every drilled layer 
of all depth increments, see Figs. 1 and 2.  

Papers made by Ajovalasit et al., (1996); Zuccarello, (1996) generally describe the IEM like a method, 
with a high sensitivity to the measurement errors due to the numerical ill-conditioning of the equation 
set. Strain gauges on the top of the core are not enough sensitive to the strains, relieved in the deeper 
layers of the drilled groove. Therefore, influence of the strain measurement errors on the calculated 
residual stress depends particularly on the number and magnitude of the depth increment distributions 
Δzi and consequently on the maximum depth H of the groove. Influence of the step distribution on the 
determination of calibration factors aij, bij and on the subsequent residual stress state determination has 
been investigated for three different types of depth increment distribution. Total depth of drilled 
groove H = 5 mm has been made by n = 8 constant, increasing and optimized (Ajovalasit et al., 
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(1989); Zuccarello, (1996)) depth increments. Optimum depth increment distribution should minimize 
error sensitivity of the experimental measurement and considerably improves the numerical 
conditioning. 

This paper describes how application of the ring-core method with theory of the IEM and the finite 
element method (FEM) could be used for a numerical simulation and determination of uniform or non-
uniform residual state of stress. The numerical simulation is used for the measurement of relieved 
residual strains on the top of the model’s core at real positions of the strain gauge rosette’s measuring 
grids. Calibration factors´ matrices a and b, which are lower triangular, need to be calculated first to 
describe uniform and non-uniform residual state of stress by the integral equation method. 

2. Integral equation method 

Like each method, the IEM has its own theoretical background to define certain relations between 
known and unknown parameters. The integral of the infinitesimal strain relaxation components caused 
by the residual stresses at all depths, relaxed in the range (0 ≤ z ≤ H), is described by Eq. (1): 
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where εa(H), εb(H), εc(H) are strains, measured by the strain gauge rosette on the top of the core´s surface 
after milling a groove having depth H, σ1(z) and σ2(z) are the unknown residual stresses acting at current 
depth z, αk(z) is the angle between the maximum principal stress σ1(z) and the direction of the strain 
gauge´s measuring grid k=a, b, c and A(H,z), B(H,z) are calibration functions, dependent on the shape and 
geometry of the ring-groove (Fig. 1). Using a three-grid rosette, Eq. (1) leads to a three linear equation 
set from which the principal residual stresses and their orientation can be evaluated too.  

For i = 1, ..., n finite depth increments Eq. (1) can be written as: 
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where the strain εkij depends only on the stress existing in the jth layer by means of Eq. (3).  

 

 
 

Fig. 1: Ring-core method: geometry and general 
notation. 

Fig. 2: Loading cases based on theory of the 
integral equation method. 

Consequently, it is necessary to divide the maximum depth H into n intervals with the depth increment 
of Δzi and to approximate the function of the principal residual stresses σ1(z) and σ2(z) in each interval 
with uniform distribution (Fig. 2). Therefore, considering i finite depth increments, Eq. (1) can be 
written as: 
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in which εkij is the strain component, relaxed on the surface solely due to the stress acting in the jth 
layer, when ith depth increments have been achieved, aij and bij are calibration factors and σ1j, σ2j are 
stresses acting within the jth layer.  
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Calibration factors aij and bij of the lower triangular matrices a and b cannot be determined by 
calibration coefficients K1 and K2 used for the IEM and described in papers Civín & Vlk (2010). They 
can be possibly obtained only by the finite element simulation.  

3. FEM simulation 

A prerequisite for correct and accurate measurement of residual strains on the top of the core is to use 
the finite element simulation. The ANSYS analysis system is used for the subsequent FE-simulation.  

FE-analysis is based on a specimen volume with dimensions of a x a = 50 mm and thickness of  
t = 50 mm. Due to symmetry, only a quarter of the model has been modelled with centre of the core on 
the surface as the origin. The shape of the model is simply represented by a block with planar faces 
with a quarter of the annular groove drilled away (Figs. 3 and 4). The annular groove has been made 
by n = 8 increments with the different step´s size Δzi (Tab. 1). The maximum depth of drilled groove 
is H = 5 mm. Dimension of outer diameter is D = 2ri = 18 mm and groove width is h = 2 mm.  

Fig. 3: Quarter of global solid model. Fig. 4: Detail of core with finite element mesh. 

Linear, elastic and isotropic material model is used with material properties of Young’s modulus  
E = 210 GPa and Poisson’s ratio μ = 0.3. Length and width of each measuring grid is l = 5 mm and  
w = 1.9 mm respectively. In case of known directions of principal residual stresses, placing of the 
three-element strain gauge rosette on the top of the ring-core is shown in Fig. 2. Strain measurement 
on the top of the core is made by integration across rosettes’ measuring grid surface. 

Tab. 1: Distribution of the depth n = 8 increments Δzi for a total depth of H = 5 mm. 
Depth 

distribution: 
Depth increment Δzi [mm]: 

Δz1 Δz2 Δz3 Δz4 Δz5 Δz6 Δz7 Δz8

Constant 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 
Increasing 0.1 0.25 0.4 0.55 0.7 0.85 1.0 1.15 

Optimized1) 0.6 0.45 0.4 0.4 0.45 0.5 0.7 1.5 
1) proposed in papers by Ajovalasit et al., (1996); Zuccarello, (1996) 

4. Calibration factors determination 

For correct determination of depth-varying principal residual stresses σ1j,  σ2j by the IEM, it is 
necessary to determine calibration factors aij, Aij and bij, Bij for each depth increment distribution. 

In order to determine factors aij and Aij it is necessary to consider for Eq. (3) biaxial state of uniform 
stress with σ1j = σ2j = 1 MPa, where εaij =εbij =εcij= εij: 
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To evaluate factors bij and Bij it is necessary to consider for Eq. (3) a pure shear state of uniform stress 
with σ1j = ‐σ2j = 1 MPa, and for αaj = 0°: 
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Finally, particular principal residual stresses σ1j,  σ2j, acting in jth layer of drilled groove with  
i = 1, .., n depth increments, can be determined by using Eq. (5) and Eq. (7): 
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For considered depth of ring-groove H = 5 mm are calibration factors aij and bij, determined for each 
type of depth increment distribution (see Tab. 1), written in Tab. 2 ÷ 4.   

Tab. 2a: Constant depth increment.   Tab. 2b: Constant depth increment.   

Tab. 3a: Linearly increasing depth increment.   Tab. 3b: Linearly increasing depth increment.   

Tab. 4a: Optimized depth increment.   Tab. 4b: Optimized depth increment.   

5. Conclusion 

This paper provided basic information about the integral equation method, used particularly for the 
non-uniform residual stress determination by the experimental ring-core method. To determine 
important calibration factors aij, bij of lower triangular matrices a and b, appropriate equations and the 
FE-model have been used. Application of optimized step distribution increases the spatial resolution 
without a significant increase of the error sensitivity and for a given number of steps it allows to 
minimize sensitivity of the strain measurement errors. 
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