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INFLUENCE OF FINITE ELEMENT ORDER ON SCF PRECISION FOR 
U-SHAPED NOTCHES IN FLAT BARS UNDER TENSION 

A. Cichański* 

Abstract: The paper presents results of research on precision of stress concentration factor for flat bars 
with opposite U-shaped notches under tension. The calculations were performed with the use of the finite 
element method with utilization of elements of various approximating polynomials orders. Each type of 
element underwent tests for different characteristic size of element. Precision of numerical calculations 
for stress concentration factor Kt was compared to errors of analytical calculations performed with 
employment of various approximate methods. The results gained in the work allow to indicate optimal 
mesh size and type of finite element providing precise Kt value with minimal DOF number.  

Keywords: Notch, local approach, stress concentration factor, finite element method. 

1. Introduction 

Determination of fatigue live of elements with notch still employs a local approach. This kind of 
solution assumes that the magnitude of fatigue damage of an element is determined by the stress at 
notch root σ. Its value is determined according to nominal net stress S and stress concentration factor 
Kt, as well as material constants E, n’, K’. The calculation models, representing the local approach, 
among others (Stephens et al., 2001) include the Neuber’s hypothesis (1) and Glinka-Molski strain 
energy density method (2): 

  (1) 

 . (2) 
The tests results present conservatism of fatigue life calculations performed with the use of the 
Neuber’s hypothesis (Boroński, 2007) and underestimation of the values for stresses determined with 
the use of the strain energy density method (Łagoda & Macha, 1998). In order to reduce the above 
mentioned errors, various types of notation modifications (1) and (2) are proposed. One of them is 
implementation of power density of stresses parameter (Łagoda & Macha, 1998) to the strain energy 
density method, which leads to the following notation (3):  
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Analysis of dependencies (1) ÷ (3) indicate a considerable influence of stress concentration factor on 
precision of σ calculations with respect to presence of the factor Kt in the second power. For purposes 
of fatigue live engineering calculations, the values of Kt factor for various notch types and sizes were 
presented in diagrams or described by the simplified dependence (Pilkey & Pilkey, 2008).  

The paper presents results of research on precision of stress concentration factor for flat bars with 
opposite U-shaped notches under tension. The estimation were performed with the use of the finite 
element method with utilization of elements of various approximating polynomials orders. Each type 
of element underwent tests for different characteristic size of element. Error of numerical calculations 
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stress concentration Kt factor was compared to errors of analytical calculations performed with 
employment of various approximate methods. 

2. Analytical methods  

One of the most commonly used analytical approximate dependency for determination of the values of 
stress concentration factor is the Neuber’s trigonometric formula (Pilkey & Pilkey, 2008). It is a 
combination of KtE and KtH values as presented below (4).  
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The KtE describes the stress concentration factor for shallow elliptical notch in semi-infinitely wide 
member. The KtH describes the stress concentration factor for deep hyperbolic notch in infinitely wide 
member. The Neuber’s formula provides Kt values determined with 10% precision with respect to the 
exact solution. Similar precision is characteristic of the method proposed by Pilkey (Pilkey & Pilkey, 
2008). It allows direct reading of Kt value from the diagram or to calculate the value from analytical 
dependence (5). In the dependence the t refers to notch depth in a specimen with W width, and C1 ÷ 
C4 values depend on the t depth and notch radius ρ.  
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An exact solution to the issue of flat bar with opposite U-shaped notches was performed by Nisitani 
with the use of body force method (Nisitani & Noda, 1986). Due to considerable complexity of such 
solution Nisitani provided the table of results appointed to notches of selected geometrical dimensions. 
In order to achieve precise approaches for notches of any geometry Noda (Noda et al., 1995) proposed 
a wide range of notations based on Neuber dependence modification. Such formulated dependencies 
allow to determine, in a wide range of uses, Kt values with 1% precision with respect to the exact 
solution.  

3. Numerical solution 

3.1. Calculation conditions 

The analyses were performed in plane stress state for tension of flat bars with opposite U-shaped 
notches specimens (Fig. 1) with geometry according to the work (Fatemi et al., 2004). Two notch 
radius R were tested. The bigger one generating stress concentration factors in tension Kt = 1.757 
(Noda et al., 1995) was marked as shallow notch. The smaller one generating stress concentration 
factors in tension Kt = 2.715 was marked as sharp notch. Geometrical dimensions of specimens shown 
in Fig. 1 are presented in Tab. 1. 

Tab. 1: Nominal dimensions of analysed specimens. 
 H R

shallow notch, Kt = 1.757 41.12 mm 9.128 mm
sharp notch, Kt = 2.715 35.56 mm 2.778 mm

 
Fig. 1: Specimens for analyses. 

H

22
,8

6

78

R

  

80



 

Linear FEM analyses performed in ANSYS were of two-dimensional character. For the purpose of the 
calculations the free meshing was used (Cichański, 2010). The analyses used four-node finite elements 
with approximating polynomials of the order from the first to sixth. Due to dual symmetry, in 
geometric shape and boundary conditions, the analyses employed a quarter of specimen. Rejection of 
specimen parts located on other sides of symmetry plane was considered via adequate defining of 
symmetrical boundary conditions on edges of division. 

3.2. Analyses results  

For selected orders of finite elements approximating polynomials, a numbers of calculations with 
various characteristic dimension of mesh were every time performed. As the mesh size decrease, the 
number of finite elements essential for division of specimen Fig. 1 increase. Along with the number of 
elements, the number of degrees of freedom for the analysed issue increase as well. Based on such 
prepared mesh a stress distribution was determined. According to the stress values at the notch root the 
value of stress concentration factor was appointed. The Kt values determined for the sharp notch with 
respect to the number of degrees of freedom for meshes of various sizes are presented in Fig. 2a. The 
analyses results for shallow notches are similarly presented on Fig. 2b. Every line presented on the 
Fig. 2 was determined with the use of elements of defined approximating polynomial order. 

       
Fig. 2: Analyses results: sharp notches a) shallow notches b). 

Charts presented in Fig. 2 indicate that for both types of notches the precision of calculations rises 
with the increase of finite element order. Additional charts processing were performed in order to 
determine what size of a model can provide Kt with constant precision for different approximating 
polynomial order. As a measure of the analysis accuracy was taken percent error δord with the reference 
value Kt determined with the use of sixth order elements. The DOF numbers with respect to the order 
of approximating polynomial for percent error δord less than 0.02% for all elements orders are 
presented in Tab. 2 and for elements orders 2° to 6° in Fig. 3.  

Tab. 2: Problem size and δord for sharp and shallow notch. 
  approximating polynomial order 
  1° 2° 3° 4° 5° 6° 

sharp notch 
element size 0.036 mm 0.063 mm 0.18 mm 0.22 mm 0.4 mm 0.9 mm 

DOF 955 170 817 488 172 200 188 540 90 645 45 124 
δord 0.319% 0.012% -0.001% -0.01% -0.002% 0% 

shallow notch 
element size 0.04 mm 0.2 mm 0.6 mm 0.7 mm 1.5 mm 3 mm 

DOF 957 716 107 854 21 289 25 556 8 702 3 098 
δord 0.126% -0.004% 0.004% -0.002% 0% 0% 

In the next step calculations were performed to compare the numerical and selected analytical 
methods. The Kt value determined with the use of Noda method was taken as a reference value for δmet 
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percent errors (Noda et al., 1995). The values of errors for Neuber method were determined using the 
dependency (4) and values of errors for Pilkey method were determined using the dependency (5). The 
values of errors for Finite Element Method were determined using the sixth order of approximating 
polynomial. Results of methods comparison are presented in Fig. 4. 

 

Fig. 3: DOF number for δord < 0.02%. Fig. 4: Comparison of calculation performed with 
different methods. 

First order elements analysis even with size above 1 mln DOF calculates Kt with error δord much more 
bigger than elements with second and higher orders of approximating polynomial. The mesh 
composed of second order finite elements allows to determine stress concentration factor precisely 
with five times more degrees of freedom in contrast to elements of third order Fig. 3. For elements 
with orders higher than third DOF number continuously decrease. The FEM analyses of elements with 
notches allow to increase precision of calculation for stress concentration factor by ten times if 
compared to approximate analytical methods Fig. 4. Additional advantage of numerical method is the 
ability to determine stress and strain distributions around the notch. 

4. Conclusions 

The work results allow to indicate optimal size of the mesh and the type of the finite element which 
shall allow obtaining high precision of calculations for stress concentration factor with controlled 
number of the problem DOF. The mesh composed of sixth order elements allows the most precision 
FEM determination stress concentration factor. The FEM analysis allow significantly decrease of Kt 
calculations error if compared to approximate analytical methods. 

In order to perform further reduction in the number of DOF for first order elements without the loss of 
precision in calculation of stress concentration factor, one shall indicate a method for refine the mesh 
around the notch root. 
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