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Abstract: The paper summarizes the method of nonlinear normal modes (NNMs) which has gained 
importance in nonlinear dynamics. Two main definitions of NNMs are discussed: Rosenberg's definition 
and Shaw and Pierre definition based on geometric arguments and inspired by the centre manifold 
technique. Fundamental properties of NNMs like frequency-energy dependence, modal interactions and 
mode bifurcations and stability are introduced. To compute the NNMs analytical and numerical 
approaches are used and compared. The NNMs approach to nonlinear dynamics is clearly demonstrated 
and compared with linear normal modes (LNMs) using a smooth nonlinear mechanical system. 
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1. Introduction 

The concept of normal modes is central in the theory of linear vibrating systems. The linear normal 
modes (LNMs) have interesting mathematical properties. They can be used to decouple the governing 
equations of motion, where a linear system vibrates as if it were made of independent oscillators 
governed by the eigensolutions. Moreover, free and forced oscillations can be expressed as linear 
combination of individual LNM motions. LNMs are relevant dynamical features that can be exploited 
for various purposes.  

In real-life applications, nonlinearity is a frequent occurrence. Typical nonlinearities include backlash 
and friction in control surface, hardening nonlinearities, saturation effects, etc. Further, for instance, 
structural behaviour of materials made of composites is deviating significantly from linearity too. Any 
attempt to apply traditional linear analysis to nonlinear systems results at best in suboptimal design. In 
this context, NNMs offer a solid theoretical and mathematical tool for interpreting wide class of 
nonlinear dynamical phenomena, yet they have a clear and simple conceptual relation to the LNMs. 
Moreover, they can be advantageously used for the reduction of nonlinear models (Gabale & Sinha, 
2011). The objective of the present paper is to describe and illustrate in a simple manner fundamental 
properties of NNMs for conservative nonlinear systems. 

2. Basic definitions of NNMs  

There exist two main definitions of the NNMs in the literature, due to Rosenberg and Shaw and Pierre 
(Kerschen et al., 2009). Historically, Lyapunov's and Poincaré's contributions served as the 
cornerstone of the NNMs development. Lyapunov showed that there exist at least n different families 
of periodic solutions around the stable equilibrium point of n-DOF conservative systems with no 
internal resonances. At low energy, the periodic solutions of each family are in the neighbourhood of a 
LNM of corresponding linearized system. These n families define n NNMs that can be regarded as 
nonlinear extensions of the n LNMs of the corresponding linear system (Vakakis et al., 1996). 

During the normal mode motion of a linear conservative system, each system component moves with 
the same frequency and with a fixed ratio amongst displacements of the components. Targeting a 
straightforward nonlinear extension of the LNM concept, Rosenberg defined a NNM as a vibration in 
unison of the system (i.e. synchronous oscillation). This definition requires that all points of the 
system reach their extreme values and pass through zero simultaneously and allows all displacements 
to be expressed in terms of a single reference displacement. 
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Shaw and Pierre proposed a generalization of Rosenberg’s definition that provides a direct extension 
of the NNMs concept to damped systems. Based on geometric arguments and inspired by the center 
manifold technique, they defined a NNM as two dimensional invariant manifold in phase space. Such 
a manifold is invariant under the flow, which extends the invariance property of LNMs to nonlinear 
systems (Shaw & Pierre, 1993).  

3. Fundamental properties of NNMs  

NNMs have intrinsic properties that are fundamentally different from those of LNMs. They are 
reviewed and some of them are illustrated in this chapter. 

3.1. Frequency-energy dependence 

One typical dynamical feature of nonlinear systems is the frequency-energy dependence of their 
oscillations. Let us consider a 2-DOF conservative system with a cubic stiffness, which is governed by 
the equations 
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To solve the system (1), harmonic balance method can be applied. This method expresses the periodic 
motion of a system by means of finite Fourier series (Nayfeh, 1996). The solution can be expressed as 
two cosine functions with different amplitudes for each coordinate, respectively. Substituting the 
solution into (1), one can obtain the unknown amplitudes in dependence on frequency of the periodic 
motion. Based on this, total energy of the system can be calculated. Due to the frequency-energy 
dependence, the representation of NNMs in a frequency-energy plot (FEP) is used (Peeters et al., 
2009). A NNM motion is represented by a point in the FEP which is drawn at a frequency 
corresponding to the minimal period of the periodic motion and at energy equal to the conserved total 
energy during the motion. Each branch represents a family of NNM motion with the same qualitative 
features (Fig. 1). 

 
Fig. 1: Frequency-energy plot of system (1), (left – LNMs, right – NNMs). 

  
Fig. 2: Time series and motion in configuration space of LNM; (left: in-phase mode T = 6.238 s,  

right: out-of-phase mode, T = 3.627 s). 
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Two representations of both LNMs and NNMS are shown in Fig. 2 and 3. Nonlinear normal modes 
can be represented by time series of coordinates of the system or they can be viewed in configuration 
space. The LNMs are represented by a straight line in configuration space and NNMs by a general 
curve. Fig. 2 shows linear normal modes of linearized system (1) while Fig. 3 displays a periodic 
solution (NNMs) of the nonlinear system (2), which corresponds to free vibration excited by nonzero 
initial conditions. It can be clearly seen that the nonlinear system can exhibit other periodic solution 
with different behaviour and time period of motion than those presented in Fig. 2. The periodic 
solution was found by shooting method combined with Newton-Raphson method. To ensure the 
convergence of this method, initial conditions have to be very close to existing solution to ensure the 
sufficient convergence. 

 
Fig. 3: Time series of NNM motions of system (2) – left, NNM motions in configuration space – right; 

in-phase NNM for ]0,0,11,9.1[)]0(q),0(q),0(q),0(q[ 2121 =&& , T = 4.75 s. 

3.2. Modal interaction 

Another salient feature of nonlinear systems is that NNMs may interact during a general motion of the 
system. A case of particular interest is when the linear natural frequencies are commensurate or nearly 
commensurate. An energy exchange between the different modes employed may therefore be 
observed during the internal resonance. For instance, exciting a high frequency mode may produce a 
large amplitude response in a low frequency mode. Dynamical interaction of an elastic system and 
nonlinear absorber exploiting these energy transfers has been studied by Mikhlin & Reshetnikova 
(2005). 

3.3. Mode bifurcations and stability 

A third fundamental property of NNMs is that their number may exceed the number of DOFs of the 
system. Due to mode bifurcation, not all NNMs can be regarded as nonlinear continuation of normal 
modes of linear system (Kerschen et al., 2009). Internally resonant NNMs are one example, another 
possible example corresponds to the NNM bifurcation of the system 
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for variations of the parameters K. This system possesses similar NNMs that obey to the relation 
)()( 12 tcqtq = . Eliminating )(2 tq from Eqs. (2), one obtains two equations for )(1 tq which must lead to 

the same solution. Therefore, after some modifications, it follows 

 .0      ),1()1)(1( 23 ≠−=−+ cccccK  (3) 

Eq. (3) means that system (2) always possesses two modes characterized by 1±=c which are direct 
extension of the LNMs. However, this system can possess two additional similar NNMs which cannot 
be captured using linearization procedures. At K=0.25, these NNMs bifurcate from the out-of-phase 
mode (see Fig. 4) (Kerschen et al., 2009). 
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Fig. 4: NNM bifurcation of system (2) (black – stable NNMs, grey – unstable NNM). 

4. Computation of NNMs  

Numerical calculation is based on the fact that the NNMs are a continuation of LNMS. Therefore, 
continuation methods are often employed (Peeters et al, 2009). The simplest and most intuitive 
continuation technique is the sequential continuation method, which uses the shooting method to find 
the periodic solution for given time period. But this method has some drawbacks. The convergence 
depends critically on the closeness of the initial guess to the actual solution and it is unable to deal 
with so called turning points. For better performance, a continuation algorithm uses a more 
sophisticated prediction than the last computed solution. In addition, corrections of the period have to 
be considered. The sequential continuation method was used to calculate presented results. 

5. Conclusions 

This paper deals with nonlinear normal modes (NNMs) as a useful theoretical and mathematical tool 
for nonlinear system investigation. Nonlinear normal modes represent a continuation of linear normal 
modes (LNMs) in cases when the linearized models cannot be used. The NNMs introduce a periodic 
motion and therefore numerical methods for finding periodic solutions can be advantageously 
employed. This paper serves as a brief summary of basic NNMs definitions and introduces 
fundamental properties of NNMs regarding conservative nonlinear systems and shows how the NNMs 
differ from LNMs. The NNMs approach will be extended to damped nonlinear systems and in the 
future it will be used for dynamical analysis of mechanical systems with clearances in general. 
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