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Summary: Analysis of laminated plates under static and transient dynamic load-
ing is presented by the meshless local Petrov-Galerkin (MLPG) method. Reissner-
Mindlin theory is used to describe the governing equations of the plate bending 
problem. Expressions for the bending moment and shear force are obtained by in-
tegration through the laminated plate considering constitutive equations in each 
lamina. A weak formulation for the set of governing equations with Heaviside step 
function as the test function is transformed to local integral equations on small 
local subdomains. The meshless approximation based on the Moving-Least-
Squares (MLS) method is employed to obtain a system of ordinary differential eq-
uations of the second order for certain nodal unknowns. Houbolt finite-difference 
scheme is used to solve them as a time-stepping method. 

 

1. Introduction 

Advances in all branches of engineering require structural and construction materials to fulfill 
higher and higher requirements depending on various operational conditions. Laminated 
composite plates are widely applied in engineering structures because their properties can be 
tailored to satisfy those high-performance requirements. Much previous research works have 
been done for static and dynamic analysis of isotropic thin plates. Previous research results 
show that the transverse shear effects are more significant for orthotropic plates than for iso-
tropic ones (Wang and Schweizerhof, 1996). It is well known that the classical thin plate 
theory of Kirchhoff gives rise to certain non-physical simplifications mainly related to the 
omission of the shear deformation and the rotary inertia, which becomes more significant for 
increasing thickness of the plate. The Reissner(1946), Mindlin(1951) plate bending theory  
and higher order shear theories (Reddy, 1997) are widely accepted and applied plate prob-
lems. Pagano (1969) obtained analytical solutions for orthotropic simply supported laminates. 
This benchmark solution has been used to validate new or improved plate theories and finite 
element formulations (Murakami, 1986). Three-dimensional deformations of multilayered, 
linear elastic, anisotropic rectangular plates are analyzed by Vel and Batra (1999). They also 
modelled quasi-static thermoelastic deformations of laminated anisotropic thick plates (Vel 
and Batra, 2001). 

     The solution of the boundary or initial boundary value problems for laminated anisotropic 
plates requires advanced numerical methods due to the high mathematical complexity. Beside 
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the well established finite element method (FEM), the boundary element method (BEM) pro-
vides an efficient and popular alternative to the FEM. The conventional BEM is accurate and 
efficient for many engineering problems. However, it requires the availability of the funda-
mental solutions or Green’s functions to the governing partial differential equations (PDE). 
The material anisotropy increases the number of elastic constants in Hooke´s law, and hence 
makes the construction of the fundamental solutions cumbersome. The elimination of shear 
locking in thin walled structures by FEM is difficult and the developed techniques are less 
accurate. Meshless methods for solving PDE in physics and engineering are a powerful new 
alternative to the traditional mesh-based techniques. Focusing only on nodes or points instead 
of elements used in the conventional FEM or BEM, meshless approaches have certain advan-
tages. The moving least-square (MLS) approximation ensures 1C  continuity which satisfies 
the Kirchhoff hypotheses. One of the most rapidly developed meshfree methods is the Mesh-
less Local Petrov-Galerkin (MLPG) method. The MLPG method has attracted much attention 
during the past decade (Atluri, 2004) for many problems of continuum mechanics. 

     In the present paper we will present for the first time a meshless method based on the local 
Petrov-Galerkin weak-form to solve dynamic problems for laminate plate bending described 
by the Reissner-Mindlin theory. The bending moment and the shear force expressions are 
obtained by integration through the laminate plate for the considered constitutive equations in 
each lamina. The Reissner-Mindlin governing equations of motion are subsequently solved 
for an elastodynamic plate bending problem. The Reissner-Mindlin theory reduces the origi-
nal three-dimensional (3-D) thick plate problem to a 2-D problem. In our meshless method, 
nodal points are randomly distributed over the mean surface of the considered plate. Each 
node is the center of a circle surrounding this node. Similar approach has been successfully 
applied to a thin Kirchhoff plate (Sladek et al., 2002) where the governing equation is decom-
posed into two partial differential equations (PDEs) of the second order. Long and Atluri 
(2002) applied the meshless local Petrov Galerkin method to solve the bending problem of a 
thin plate. The MLPG method has been also applied to Reissner-Mindlin plates and shells 
under dynamic load by Sladek et al. (2007).  

     Here the weak-form on small subdomains with a Heaviside step function as the test func-
tions is applied to derive local integral equations. Applying the Gauss divergence theorem to 
the weak-form, the local boundary-domain integral equations are derived. After performing 
the spatial MLS approximation, a system of ordinary differential equations for certain nodal 
unknowns is obtained. Then, the system of the ordinary differential equations of the second 
order resulting from the equations of motion is solved by the Houbolt finite-difference 
scheme (Houbolt, 1950) as a time-stepping method. Numerical examples are presented and 
discussed to show the accuracy and the efficiency of the present method. 

 

 

2.  Local integral equations for laminate plate theory 

The classical laminate plate theory is an extension of the classical plate theory to composite 
laminates. Let us consider a plate of total thickness h composed of N orthotropic layers with 
the mean surface occupying the domain   in the plane 1 2( , )x x . The 3x z  axis is perpendi-

cular to the midplane (Fig.1). The k-th layer is located between the points kz z  and 1kz z   

in the thickness direction. 
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Fig. 1   Laminated plate: a) sign convention of bending moments and forces,  

b) layer numbering for a general laminated plate 

 

     The Reissner-Mindlin plate bending theory (Reissner, 1946; Mindlin, 1951) is used to de-
scribe the plate deformation. The transverse shear strains are represented as constant through-
out the plate thickness and some correction coefficients are required for computation of trans-
verse shear forces in that theory. Then, the spatial displacement field in time  , due to trans-
verse loading and expressed in terms of displacement components u1, u2, and u3, has the fol-
lowing form (Reddy, 1997) 

 



1 3 3 1( , , ) ( , )u x x w x x  

2 3 3 2( , , ) ( , )u x x w x x     

    3 3( , ) ( , )u w x x   (1) 

where 1 2( , , )w x x  and 3 1 2( , , )w x x  represent the rotations around the in-plane axes and the 

out-of-plane deflection, respectively (Fig. 1).  
     Linear strains are given by 

11 3 3 1,1( , , ) ( , )x x w  x x  

22 3 3 2,2( , , ) ( , )x x w  x x  

                        12 3 3 1,2 2,1( , , ) ( ( , ) ( , )) / 2x x w w    x x x  

              13 1 3,1( , ) ( ( , ) ( , )) / 2w w    x x x  

  23 2 3,2( , ) ( ( , ) ( , )) / 2w w    x x x   (2) 

     In the case of orthotropic materials for the k-th lamina, the relation between the stress ij  

and the strain ij  is described by the constitutive equations for the stress tensor  

 ( ) ( )
3 3( , , ) ( , , )k k

ij ijml mlx c x   x x   (3) 

where the material stiffness coefficients ( )k
ijmlc are assumed homogeneous for the k-th lamina. 

     For plane problems the constitutive equation (3) is frequently written in terms of the 
second-order tensor of elastic constants (Lekhnitskii, 1963). The constitutive equation for 
orthotropic materials and plane stress problem has the following form 
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( )kE are the Young´s moduli refering to the axes x , 1, 2  , ( )
12

kG , ( )
13

kG and ( )
23

kG  are 

shear moduli, 12 and 21 are Poisson´s ratios.  

Despite the stress discontinuities, one can define the integral quantities such as the bending 
moments M and the shear forces Q with 5 / 6  from the Reissner plate theory as 
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     Substituting equations (4) and (2) into moment and force resultants (5) allows the expres-
sion of the bending moments M and shear forces Q for α,β=1,2, in terms of rotations and 

lateral displacements of the orthotropic plate. In the case of considered layer-wise material 
properties through the plate thickness, one obtains 

 , , ,M D w w C w            

  3,Q C w w       (6) 

where repeated indices  ,  do not imply summation  and the material parameters Dαβ and 
Cαβ are given as 
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For a homogeneous plate, equations (7) are transformed into a simpler form 
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Assuming the mass density to be homogeneous within each lamina and using the Reissner’s 
linear theory of thick plates (Reissner, 1946), the equations of motion may be written as  

                                             , ( , ) ( , ) ( , )MM Q I w      x x x                                       (9) 
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are global inertial characteristics of the laminated plate. The Greek indices vary from 1 to 2. If 
the mass density is constant throughout the plate thickness, we obtain 

3

12M

h
I


 ,  QI h . 

The dots over a quantity indicate differentiations with respect to time .  

     Instead of writing the global weak-form for the above governing equations, the MLPG 
methods construct the weak-form over local subdomains such as s , which is a small region 

taken for each node inside the global domain (Atluri, 2004). The local subdomains overlap 
each other and cover the whole global domain  as seen in Fig. 2. The local subdomains 
could be of any geometrical shape and size. In the current paper, the local subdomains are 
taken to be of circular shape. The local weak-form of the governing equations (9) and (10) for 

i i
sx  can be written as 

                          *
, ( , ) ( , ) ( , ) ( ) 0

i
s
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i
s
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

      x x x x   (12) 

where * ( )w x and *( )w x are weight or test functions.   

Applying the Gauss divergence theorem to Eqs. (11) and (12) one obtains 
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where i
s is the boundary of the local subdomain and ( , ) ( , ) ( )M M n   x x x  is the 

normal bending moment, n  is the unit outward normal vector to the boundary i
s . The 

local weak-forms (13) and (14) are the starting point for deriving local boundary integral equ-
ations on the basis of appropriate test functions. Unit step functions are chosen for the test 
functions * ( )w x and *( )w x in each subdomain  
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Then, the local weak-forms (13, 14) are transformed into the following local integral equa-
tions 
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In the above local integral equations, the trial functions ( , )w x , related to rotations, 

and 3( , )w x , related to transversal displacements, are chosen as the moving least-squares 

(MLS) interpolation over a number of nodes randomly spread within the domain of influence 
as described in the following Section 3. Let us notice, that the local subdomain is defined as 
the support of the test function on which the integration is performed and the domain of influ-
ence is defined as a region where the test function is not zero and all nodes lying inside are 
considered for interpolation.  
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Fig. 2 Local boundaries for weak formulation, the domain x  for MLS approximation of the 

trial function, and support area of weight function around node ix  

 

 

3.  Numerical solution 

In general, a meshless method uses a local interpolation to represent the trial function with the 
values (or the fictitious values) of the unknown variable at some randomly located nodes. The 



moving least-squares (MLS) approximation (Lancaster and Salkauskas, 1981; Atluri 2004) 
used in the present analysis may be considered as one of such schemes. Let us consider a sub-
domain x of the problem domain   in the neighbourhood of a point x for the definition of 

the MLS approximation of the trial function around x (Fig. 2). To approximate the distribu-
tion of the generalized displacements (rotations and deflection) in x over a number of ran-

domly located nodes  ax , na ,...2,1 , the MLS approximant ( , )h
iw x of ( , )iw x   is de-

fined by Atluri (2004) as 
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h T a a
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where 1 2 3, ,
Th h h hw w w   w  and ˆ ( )a w  are the fictitious nodal values, but not the nodal val-

ues of the unknown trial function ( , )h w x , in general. Recall that n is the number of nodes 

in x .   

     In eq. (18), )(xa  is usually referred to as the shape function of the MLS approximation 

corresponding to the nodal point ax . The support domain of the nodal point ax is usually 

taken to be a circle of the radius ar  centred at ax  (see Fig. 2). There are various weight 

functions ( )av x available for obtaining )(xa as shown by Atluri (2004), in this work a 4th-

order spline-type weight function is applied. In practical applications, ( )av x  is often chosen 

in such a way that it is non-zero over the support of the nodal point ax . With such weigh 

function, the 1C -continuity of the weight function is ensured over the entire domain; there-
fore the continuity condition of the bending moments and the shear forces is satisfied. The 
size of the support ar  should be large enough to cover a sufficient number of nodes in the 
domain of definition to ensure the regularity of evaluated matrices. The value of n is deter-
mined by the number of nodes lying in the support domain with radius ar .   
     The directional derivatives of ( , )w x are approximated in terms of same nodal values as 
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Substituting the approximation (19) into the definition of the normal bending (6), one obtains 
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where the vector * ( )a w is defined as a column vector *
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Ta a aw w     w ,  the ma-

trices ( )N x  are related to the normal vector n(x) on s , and the matrices a
B  are 

represented by the gradients of the shape functions ,1
a and ,2

a  and parameters D  (Sla-

dek et al., 2007). The influence of the material properties for composite laminas is incorpo-
rated in C  and D  defined in equations (7). 

     Similarly one can obtain the approximation for the shear forces  
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     Then, insertion of the MLS-discretized force fields (20) and (21) into the local integral 
equations (16) and (17) yields the discretized local integral equations (LIEs)     
 

* *

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
i i i i
s sw s s

n n
a a a a a

M
a aL

d d I d     
   

 
     

  
   N x B x C x x w w x  

                                  3
1

ˆ ( ) ( ) ( ) ( , )
i i
s sM

n
a a

a

w d d 
  

      C x F x M x   (22) 

*
3

1 1

ˆ( ) ( ) ( ) ( ) ( ) ( )
i i
s s

n n
a a a a

n n
a a

d s w s d
  

   
      
   
   

  C x x w C x F x  

                                    3
1

ˆ ( ) ( ) ( , )
i i
s s

n
a a

Q
a

I w d q d  
  

 
     
 
 

  x x     (23) 

where    1 2 1 1 2 2( ) , ( ) ,n n n C n C n C x C x  and ( )C x represents material properties. 

     Equations (22) and (23) are considered on the subdomains adjacent to the interior nodes ix  

as well as to the boundary nodes on i
sM . For the source point ix  located on the global boun-

dary   the boundary of the subdomain i
s  is decomposed into i

sL  and i
sM  (part of the 

global boundary with prescribed bending moment) according to Fig. 2.  

     It should be noted here that there are neither Lagrange multipliers nor penalty parameters 
introduced into the local weak forms (11) and (12) because the essential boundary conditions 

on i
sw  (part of the global boundary with prescribed rotations or displacements) can be im-

posed directly, using the interpolation approximation (18) 
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where ( , )i xw  is the generalized displacement vector prescribed on the boundary i
sw .  

          Collecting the discretized local boundary-domain integral equations together with the 
discretized boundary conditions for the generalized displacements, one obtains a complete 
system of ordinary differential equations and it can be rearranged in such a way that all 
known quantities are on the r.h.s. Thus, in matrix form the system becomes 

      Ax Cx Y   (25) 
          Recall that the system matrix has a block structure. There are many time integration 

procedures for the solution of this system of ordinary differential equations. In the present 
work, the Houbolt method is applied. In the Houbolt finite- difference scheme (Houbolt, 
1950), the “acceleration”  u x  is expressed as 
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     where   is the time step. Substituting eq. (26) into eq. (25), we get the following system of 

algebraic equations for the unknowns  x  

                    
 22 2 2

2 1 1
5 4           

          
A C x Ax A x x Y   (27) 

 The value of the time step has to be appropriately selected with respect to material parameters 
(wave velocities) and time dependence of the boundary conditions. 

   
  
  

4. Numerical examples 
 

4.1 Clamped three-ply square plate 

Consider a clamped square plate with a side-length 0.254a m  and the plate thick-
nesses 0.0127h m . The plate is subjected to a uniformly distributed static load. Homoge-
neous material properties are considered at first to test accuracy of the present computational 
method. Then orthotropic properties are considered. The following material parameters are 
used in numerical analysis: Young’s moduli 10 2

2 0.6895 10 N/mE   , 1 22E E , Poisson’s 

ratios 21 0.15  , 12 0.3   and mass density 3 35.0 10 kg/m   . Shear moduli used corres-

pond to Young’s modulus 2E , namely, 12 13 23 2 12/ 2(1 )G G G E     . 

     In our numerical calculations, 441 nodes with a regular distribution were used for the ap-
proximation of the rotations and the deflection. The origin of the coordinate system is located 
at the center of the plate (Fig. 1a)). The deflection value is normalized by the corresponding 
central deflection of an isotropic homogeneous plate, considering 1 2E E , 12 21 0.3   . 

For a uniformly distributed load 6 2
0 300 psi (2.07 10 Nm )q    we have 

3
3 (0) 8.842 10isow m  . The numerical results are compared with the results obtained by the 

FEM-ANSYS code with a very fine mesh of 900 quadrilateral eight-node shell elements for a 
quarter of the plate.  

     The clamped three-ply square plate under a static uniform load is analyzed. Geometrical 
parameters are the same as in the previous homogeneous case. The bottom and top layers 
have the same thickness 1 3 / 4h h h  . Young`s moduli for both bottom and top layers are the 

same and they are 5 time larger than ones corresponding to the homogeneous orthotropic 
plate. The second mid-layer has the same material properties as the homogeneous orthotropic 
plate analyzed previously. For the numerical modelling we have used again 441 nodes with a 
regular distribution. The variation of the deflection with the 1x -coordinate at 2 0x   of the 

plate is presented in Fig. 3. One can observe that the deflection value is reduced for the lami-
nated orthotropic plate due to the larger flexural rigidity. The variation of the bending mo-
ment 11M  is presented in Fig. 4. Here, the bending moments are normalized by the central 

bending moment value corresponding to an isotropic homogeneous plate 11 (0) 3064isoM Nm . 

If you compare bending moments for orthotropic homogeneus plate shown in Fig. 4 with re-



sults for orthotropic laminated plate, the results are very similar. It means that considered la-
mination has vanishing influence on the bending moment variation. 

 
Fig. 3 Variation of deflection with the 1x -coordinate for a clamped laminated square plate 

 

 
Fig. 4 Variation of bending moment with the 1x -coordinate for a clamped laminated plate 

 

     Clamped orthotropic laminated square plate under an impact load with Heaviside time var-
iation is analyzed too. Geometrical and material parameters are the same as in the previous 



static case. Numerical calculations are carried out for a time step 40.357 10 s    . The time 
variations of the central deflection and the bending moment 11M are given in Fig. 5 and Fig. 

6, respectively. Both quantities are normalized by their corresponding static values at the cen-
ter of the isotropic homogeneous plate. Time is normalized by 

2 2
0 / 4 / 0.3574 10a h D s      . 
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Fig. 5 Time variation of the deflection at the centre of a clamped laminated plate subjected to 
a suddenly applied load 
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Fig. 6 Time variation of the bending moment at the centre of a clamped laminated plate sub-
jected to a suddenly applied load 



 

     The MLPG results are compared with those obtained by FEM-ANSYS computer code. A 
good agreement of the present results for the deflections and the bending moments at the cen-
tral point and the FEM results is observed in every figure. 

 

4.2  Simply supported three-ply square plate 

A simply supported three-ply square plate under a static uniform load is analyzed. The used 
geometrical and material parameters are the same as in the previous clamped plate. For the 
numerical modelling we have used again 441 nodes with a regular distribution. A uniformly 
distributed load 6 2

0 300 psi (2.07 10 Nm )q   is considered here. The deflection value is 

normalized by the corresponding central deflection of an isotropic homogeneous plate 

3 (0) 0.02829isow m . The variation of the deflection with the 1x -coordinate at 2 0x   of the 

plate is presented in Fig. 7. One can observe that the deflection value is reduced for the ho-
mogeneous orthotropic plate due to the larger flexural rigidity. Higher deflection reduction is 
seen for laminated orthotropic plate due to further flexural rigidity increase. 
     The variation of the bending moments 11M is shown in Fig. 8. The bending moment at the 

centre of the plate 11 (0) 6482isoM Nm  is used as a normalized parameter. The bending mo-

ments are enlarged for the orthotropic homogeneous or laminated plates with respect to the 
moments for isotropic plate. The lamination has vanishing influence on the bending moments. 
The MLPG results are again compared with those obtained by FEM-ANSYS computer code. 
 

 
Fig. 7 Variation of the deflection with the 1x -coordinate for simply supported square plates 

 



 
Fig. 8 Variation of the bending moment with the 1x -coordinate for simply supported square 

plates 

 

 

5. Conclusion 
A meshless local Petrov-Galerkin method is applied to laminated plates under mechanical 
loadings. Both stationary and impact loads are considered. The present computational method 
has no restriction on number of laminae and their material properties. The laminated plate 
bending problem is described by the Reissner-Mindlin theory. The weak-form on small sub-
domains with a Heaviside step function as the test functions is applied to derive local integral 
equations. After performing the spatial MLS approximation, a system of ordinary differential 
equations for certain nodal unknowns is obtained. Then, the system of the ordinary differen-
tial equations of the second order resulting from the equations of motion is solved by the 
Houbolt finite-difference scheme as a time-stepping method.  

     The proposed method is a truly meshless method, which requires neither domain elements 
nor background cells in either the interpolation or the integration. It is demonstrated numeri-
cally that the quality of the results obtained by the proposed MLPG method is very good. The 
degree of the agreement of our numerical results with those obtained by the FEM-ANSYS 
computer code ranges from good to excellent.  
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