
PERFORMANCE ANALYSIS OF A SPARSE DIRECT SOLVER
IMPLEMENTATION

P. Pařı́k 1

Summary: The paper presents the results of a performance analysis of the new
sparse direct solver and the existing frontal solver of the in-house finite element
system PMD, which has been carried out on a set of finite element problems from real
engineering applications. The sparse direct solver has been designed to efficiently
solve large finite element problems (106 to 107 equations) to overcome limitations of
the frontal solution method. Some modifications to existing numerical methods for
storage, ordering and solution of linear equation systems have been implemented in
the sparse direct solver to enhance its effectiveness, and are also briefly mentioned
in the paper.

1. Introduction

The solution of a system of linear equations lies at the basis of every computation using
the finite element method. In the past decades, much attention has been directed towards an
efficient implementation of solvers for large finite element problems. Direct methods, based
on the Gaussian elimination, could not be overly used due to the limited capacity of available
computers, which favored iterative methods that had lower computational demands but were
much less robust. With the increasing performance of computers in late 1980s it became possible
to implement skyline direct solvers, which exploited the fact that the skyline of the coefficient
matrix was retained during the factorization. Today, skyline solvers are still mistakenly consi-
dered by some as the ultimate direct solvers for large finite element problems. However, the
research conducted in the last decade showed that very large finite element problems could be
solved more efficiently by a general sparse direct solver that would work only with nonzero
entries of the coefficient matrix.

2. Implementation of the sparse direct solver

The basic methods involved in a sparse direct solution are the matrix storage method, the
(pre)ordering method, and the solution (factorization) method, which are all interdependent
to some degree. The storage of the whole coefficient matrix (or approximately one half in
symmetric cases) is obviously never acceptable except the smallest problems that are however
not practical. Matrix storage schemes thus try to exploit sparsity, symmetry and other properties
of the coefficient matrix to store as few zero entries of the matrix as possible. Although it is
1 Ing. Petr Pařı́k, Institute of Thermomechanics ASCR, Dolejškova 5, 182 00 Prague 8, tel. +420 2 6605 3441,
e-mail: parik@it.cas.cz

International Conference
ENGINEERING MECHANICS 2010
Svratka, Czech Republic, May 10 – 13, 2010

perfectly reasonable not to store any nonzero entries, which is clearly the most efficient option
and is indeed used for example in iterative methods, direct methods unfortunately spoil the
sparsity structure by introducing new nonzero entries during the triangularization (factorization)
of the coefficient matrix. This occurence of new nonzeros is called the fill-in and presents a
major drawback and difficulty of direct methods. The initial nonzero structure of the matrix as
well as the final nonzero structure (the amount of fill-in) can be substantially affected by using
an ordering method. Storage of the coefficient matrix in the case of large problems requires a
careful consideration, since it has a significant impact on the practical implementation of the
solution method.

Ordering methods switch rows and columns of the matrix to obtain another, preferably more
suitable, order of pivots on the main diagonal. An important consequence is that the resulting
nonzero structure of the reordered matrix may allow an efficient storage and/or factorization
using direct methods. Different ordering methods usually imply certain types of matrix storage
schemes. For example, profile minimization algorithms move all nonzero entries close to the
main diagonal, yielding a band or skyline matrix, therefore, a band or skyline storage format is
ideal. The fill-in can occur only within the band or under the skyline of the coefficient matrix, thus
it is also effectively reduced. Fill-in minimization algorithms are used specifically to reduce the
fill-in, but they result in a more complicated nonzero structure requiring more complex storage
schemes. Ordering methods usually work with graphs representing the nonzero structure of the
matrix, and since operations on graphs are computationally expensive, the time complexity rises
quickly in the case of large problems. However, without a suitable ordering, the direct solution
of large problems is generally impossible due to uncontrollable fill-in.

The sparse direct solution is mostly performed using a variant of the Gaussian elimination. In
order to be efficient, the method must exploit the sparsity of the coefficient matrix by avoiding
unnecessary operations on zero entries. This largely depends on the employed matrix storage
scheme and also on the used ordering method. Small and medium problems can be usually fully
solved in memory (in core), but in the case of large problems, it may be necessary to store a part
of the matrix data temporarily on the disk (out of core). Out-of-core solution of course involves
much more complicated algorithms and since the disk storage is much slower than the memory
storage, great care must be taken to implement the solution method efficiently.

2.1. Storage metod of the coefficient matrix

A simple and efficient matrix storage method for the out-of-core sparse direct solver is proposed
in Parik (2010). It is partially based on the compressed row storage format and the dynamic
block compressed row storage format described in Ueberhuber (1994). The proposed storage
format has the following features:

• Only one-dimensional arrays are employed that are easy to understand and implement in
FORTRAN 77 using the PMD memory allocation strategy.

• Integer and real data are stored in separate arrays and thus no index conversions are
necessary.

• General finite element meshes with variable number of nodal degrees of freedom as well
as the prescribed boundary conditions are taken into account, i.e., nodal submatrices can
be of variable size.

• Nodal submatrices are numbered implicitly to allow an efficient out-of-core data manipu-
lation using direct-access file.

• The size of the data structure is the same or less than in the K3/F77 storage format.

The proposed block sparse storage format is very efficient in both the storage overhead (re-
sulting in low matrix storage size) and the algorithmic overhead (resulting in quick accessibility
of matrix entries). It allows the sparse direct solver to perform all necessary operations on the
coefficient matrix (assembly, factorization and substitution) either in-core or out-of-core, depen-
ding on the amount of available memory. Efficient out-of-core data manipulation is provided by
using direct-access file.

2.2. Ordering method

The ordering method chosen for the sparse direct solver is the approximate minimum degree
ordering algorithm, described for example in Amestoy, Davis and Duff (2004), to minimize the
fill-in introduced in the sparse factorization, and consequently to reduce the storage requirements
and the time needed to obtain the solution. Although established implementations of the appro-
ximate minimum degree ordering are available, their use in a commercial sparse direct solver is
prohibited, and the possibility for modifications is limited. Therefore, an original version of the
minimum degree algorithm is proposed in Parik (2010) for the use in the sparse direct solver.
This version is capable of selective switching of various features (supervariables, approximate
degrees, etc.) to allow the efficiency of the algorithm to be analyzed and tuned up thoroughly.

2.3. Solution method

The solution method chosen for the sparse direct solver is the block LDLT factorization, which
is described (although without considering the block structure) for example in Ueberhuber
(1994). The most efficient algorithm for an out-of-core LDLT factorization, proposed in Parik
(2010), is the left-looking algorithm performed by rows, which is not commonly mentioned
in literature. It allows efficient use of the available memory and also efficient out-of-core data
manipulation.

3. Performance analysis

The analysis was performed on four different computer systems that are listed in Table 1.
Systems hastrman and rusalka are UNIX-based mainframe servers2 while ds9 and
obkladac are common Windows-based PCs. UNIX systems allow the 32-bit programs to
utilize the full 2 GiB memory space for data, whereas Windows systems have somewhat lower
limit, probably due to shared memory space between program data and code. On rusalka
the limit 1 GiB is imposed by the administrator. On obkladac the physical memory is only
1 GiB but virtual memory is provided by the operating system, therefore the limit is the same as
on ds9. Collectively, these various configurations simulate practical environments where the
PMD3 system can be used.

2 The servers are located at the Institute of Thermomechanics ASCR.
3 Details about the PMD system can be found at http://www.vamet.cz/.

On all four systems a 32-bit FORTRAN 77 compiler was used to compile the PMD code
(including the frontal solver and the sparse direct solver) with full optimizations. The reasons
for not testing also the 64-bit version (in UNIX) is that it is not up-to-date, because the PMD
system is presently used mostly for finite element computations on 32-bit platforms in practice.
Nevertheless, the sparse direct solver would benefit from the 64-bit memory space since it could
perform all matrix operations in-core regardless of physical memory size. There are however
no benefits from the 64-bit version of the frontal solver.

Table 1. Computer systems used for solver performance analysis

Name Type Operating system Fortran compiler
hastrman Server HP Tru64 UNIX V5.1B HP Fortran V5.5A-3548-48D88
rusalka Server HP Tru64 UNIX V5.1B HP Fortran V5.5A-3548-48D88
ds9 PC Windows XP V5.1.2600 Compaq Visual Fortran V6.6A
obkladac PC Windows XP V5.1.2600 Compaq Visual Fortran V6.6A
Name Processor(s) Frequency Memory Maximum

[GHz] [GiB] core size LI
hastrman 4x DEC Alpha EV7 1.0 8 536,870,911
rusalka 4x DEC Alpha EV6 0.5 2 268,411,848
ds9 1x Intel Core 2 Duo T8100 2.1 4 498,000,000
obkladac 1x AMD Athlon 64 3000+ 1.8 1 498,000,000

Storage requirements of the sparse direct solver and frontal solver are listed in Table 2. It
can be seen that the memory requirements of the sparse direct solver are very high compared to
the frontal solver, however, the sparse direct solver has to store the whole coefficient matrix in
memory, unlike the frontal solver. Due to the optional out-of-core mode, the sparse direct solver
is capable to process even problems that do not fit into the available memory, as is demonstrated
for example by the problem BUBEN.

On the other hand, the disk storage requirements of the sparse direct solver are substantially
lower than that of the frontal solver, up to 90% in some cases. It is due to the efficient block
sparse storage and especially due to the use of the fill-in minimization ordering (minimum
degree algorithm). The disk storage requirements of the sparse direct solver are slighly higher
that its memory requirements because unlike the memory storage, the disk storage has to use
fixed-size blocks.

Table 2. Solver storage sizes (in MB)

Problem Number of Frontal solver Sparse direct solver
name equations Memory Disk Memory Disk
P6 LIN 19,656 9 226 55 64
P6 QUAD 74,742 76 2,472 641 695
K1 136,354 14 1,676 300 493
ADS 359,504 14 2,974 362 607
K3 362,262 49 7,307 924 1,464
A98ABT001 1 365,043 76 8,763 758 869
DOCHL 387,829 43 4,820 542 837
BUBEN 1,739,211 127 46,851 10,369 10,924

Ordering times of the sparse direct solver are listed in Table 3 (frontal solver does not use
any method of ordering). The ordering times depend on the system, but they are practically
negligible compared to the solution times and therefore are not counted for the final comparison
of the solvers.

Table 3. Solver ordering times

Problem Number of Sparse direct solver
name equations hastrman rusalka ds9 obkladac
P6 LIN 19,656 00:00:00 00:00:01 00:00:00 00:00:00
P6 QUAD 74,742 00:00:04 00:00:09 00:00:01 00:00:02
K1 136,354 00:00:05 00:00:12 00:00:01 00:00:03
ADS 359,504 00:00:31 00:01:11 00:00:07 00:00:18
K3 362,262 00:00:32 00:01:13 00:00:07 00:00:19
A98ABT001 1 365,043 00:00:47 00:01:49 00:00:11 00:00:27
DOCHL 387,829 00:00:41 00:01:34 00:00:09 00:00:23
BUBEN 1,739,211 00:22:15 00:32:32 00:02:53 00:07:00

Finally, solution times of the sparse direct solver and the frontal solver are listed in Table 4. It
can be seen that the sparse direct solver is indeed quite efficient, the block sparse solution can be
up to 90% faster than the frontal solution in some cases. The largest computed problem, BUBEN
(see Figure 1), achieved about 60% faster block sparse solution on most systems, except for
hastrman, where the solution time was severely affected by the disk access speed.

Table 4. Solver solution times

Problem Number of Frontal solver
name equations hastrman rusalka ds9 obkladac
P6 LIN 19,656 00:01:26 00:05:23 00:01:13 00:01:28
P6 QUAD 74,742 00:54:23 03:21:32 00:40:01 00:46:06
K1 136,354 00:11:36 00:47:37 00:09:49 00:11:40
ADS 359,504 00:09:59 00:27:19 00:05:59 00:10:07
K3 362,262 01:46:01 05:37:33 01:08:32 01:20:38
A98ABT001 1 365,043 02:12:30 09:20:33 01:52:17 02:10:02
DOCHL 387,829 00:42:46 02:33:13 00:32:21 00:39:50
BUBEN 1,739,211 12:30:47 × 10:07:12 11:46:44
Problem Number of Sparse direct solver
name equations hastrman rusalka ds9 obkladac
P6 LIN 19,656 00:00:28 00:00:54 00:00:11 00:00:20
P6 QUAD 74,742 00:19:00 00:39:04 00:07:16 00:12:46
K1 136,354 00:03:54 00:07:47 00:01:31 00:02:43
ADS 359,504 00:03:43 00:08:26 00:01:48 00:03:06
K3 362,262 00:20:37 00:38:57 00:07:28 00:13:03
A98ABT001 1 365,043 00:13:18 00:31:32 00:07:18 00:11:53
DOCHL 387,829 00:06:38 00:13:56 00:02:58 00:04:59
BUBEN 1,739,211 12:21:06 × 05:29:27 07:12:17
× not completed due to system limitations

Figure 1. Mesh of the largest problem BUBEN (a winding engine drum)

4. Conclusions

The implemented sparse direct solver based on the block sparse matrix storage format,
minimum degree algorithm and block sparse factorization has been confirmed to be an efficient
and adequate complement to the existing frontal solver of the PMD system. It has high memory
requirements, but in practice, this is not a difficulty for present computers and operating systems,
and the savings in time and disk space required for the solution can be up to 90% or even more.
The sparse direct solver is a suitable option especially in cases of very large problems where
the frontal solver starts to have unreasonable requirements on disk storage. However, it should
be noted that there are some cases where the frontal solution may be faster, especially when the
frontwidth is small, because the minimum degree algorithm (being merely a heuristic) is not
guaranteed to always give the best ordering.

5. Acknowledgment

The support of grant GA ČR 101/09/1630 is gratefully acknowledged.

6. References

Pařı́k, P. 2010: An out-of-core sparse direct solver for very large finite element problems.
Doctoral thesis, Czech Technical University in Prague.

Duff, I. S. & Scott, J. A. 2005: Towards an automatic ordering for a symmetric sparse direct
solver. Technical Report RAL-TR-2006-001, Rutherford Appleton Laboratory, Oxon.

Amestoy, P. R., Davis, T. A. & Duff, I. S. 2004: Algorithm 837: AMD, an approximate minimum
degree ordering algorithm. ACM Transactions on Mathematical Software 30, 381–388.

Ueberhuber, C. W. 1994: Numerical computation. Springer, Berlin.

