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Summary: This article introduces results of Genetic Programming used for cre-
ation of experimental data approximations together with the search for significant
parameters of an affinity cement paste hydration model. Within Genetic Program-
ming trees, the placements of constants still has not been satisfactorily solved.
Therefore, the proposed contribution also presents a search for real-valued con-
stants employing Ordinary Least Squares. Twenty trees as results of twenty inde-
pendent runs of Genetic Programming are presented. From these results the best
seven trees are chosen according to specific criteria and the approximations of ex-
perimental data are shown. Still, many aspects of Genetic Programming-based
symbolic regression are uncovered and especially suppression of the overfitting is-
sues remains unsolved.

1. Introduction to Genetic Programming

Genetic Programming (GP) is a relatively new form of artificial intelligence and is inspired
by Darwinian biological evolution and genetics. GP is an extension of Genetic Algorithms
(GA) (Yeun et al., 2005). Contrary to GA that uses string of numbers to represent the so-
lution, Genetic Programming deals with tree-structured program (tree) as an individual (see2

Figure 1). GP searches highly fit computer programs in the space of all possible programs that
solve a problem. The trees are compound of nodes that are elements either from a functional set
or from a terminal set. Generally, the functional set consists of mathematical operators, for ex-
ample {+,−, ∗, /} while the terminal set contains variables or constants. The main difference
in the functional set and the terminal set is that the terminal set cannot have arguments.

The evolution of programs is performed through the action of genetic operators and the eval-
uation of the fitness function (Alvarez et al., 2000). Generally, there are three main genetic
operators: reproduction, crossover and mutation. Reproduction is the process of copying indi-
viduals according to their fitness value (Yeun et al., 2005). Trees with fitness lower than the
average are killed and the new population is filled with the surviving trees. Meanwhile, the
crossover is the process of combining information from two trees that are selected from the
whole population. Here, one randomly selected subtree is interchanged with another one and
two new offsprings are created (see3 Figure 2). The last genetic operator is mutation (see again
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Figure 1: The example of a tree.

Figure 2). Mutation replaces the subtree of selected individuals with new randomly generated
subtrees (Yeun et al., 2005). These operations with trees are repeated after several generations
until the tree with optimum fitness value is obtained. The principle of genetic programming can
be seen in Figure 3.

1.1. Symbolic regression in Genetic Programming

Problems of symbolic regression require finding a function in a symbolic form that fits
a given finite sampling of data points (Koza, 1998). One of the main challenges in symbolic
regression using Genetic Programming is the handling of constants (or real numbers). There are
three known possibilities how to solve it. Koza in (Koza, 1998) has expanded the terminal set by
adding new special terminal called the ephemeral random constant. Whenever the ephemeral
random constant is chosen for any endpoint of the tree during the creation of the initial random
population in generation 0, a random number of a specified data type in a specified range is
generated and attached to the tree at that point (Koza, 1998). These constants remain fixed for
all generations.

The second access to solving constants in symbolic regression is presented in paper (Alvarez
et al., 2000). The authors used Genetic Programming for the creation of approximation func-
tions obtained by the response surface methodology. In this work the constants are called tuning
parameters. They are allocated to a subtree depending on the type of the current node and the
structure of the subtree according to the algorithm described in (Alvarez et al., 2000). Once the

Figure 2: Two genetic operators: the crossover and the mutation.



Figure 3: The flowchart of GP metodology reproduced from (Alvarez et al., 2000).



tuning parameters are allocated at different parts of a tree, a nonlinear optimization method is
used to compute them.

The last approach of constants’ handling has been used, e.g., in (Yeun et al., 2005). Authors
have reported their work regarding GP with polynomials which are applied to fitting a given
response surface. They transformed the GP tree into the standard mathematical form by the
help of their own translation algorithm. Then the classical regression matrix is created and the
ordinary least squares method (OLS) is used to estimate the coefficients. This methodology
seems to reduce computational cost in comparison with nonlinear optimization method.

There are more articles concerning symbolic regression in Genetic Programming. For in-
stance, a paper by (Rodrı́guez-Vázquez and Oliver-Morales, 2004) presents the analysis of the
effect of Multi-Branches Genetic Programming in function approximation problems (i.e. sym-
bolic regression problems). Another article published by (Streeter and Becker, 2003) describes
the usage of Genetic Programming to automate the discovery of numerical approximation for-
mulae. Nevertheless, neither paper specifies the way how they deal with constants within GP
trees.

2. Application of GP to cement paste hydration data

Modeling of hydrating concrete represents a challenging task especially due to multiscale
nature and missing mathematical formulation of several underlying phenomena. Missing phys-
ical and mathematical description can be replaced by cellular automata model (Šmilauer, 2006).
Question arises, whether results from such virtual models can be trusted. In following, Genetic
Programming is applied at prediction of hydration heat solely from experimental datasets.

The experimental data was obtained via isothermal calorimetry. Typically, a cement paste
is poured in the vial inside temperature-stabilized calorimeter environment (Šmilauer, 2010).
The released hydration heat at different times was obtained for the eight samples of cement
pastes, see Table 1, (consecutively from top): Data measured at CTU by TAMAir isothermal
calorimeter, from (Princigallo et al., 2003), data from private communication and determined
from evaporable water content and assumed potential hydration heat 480 J/g, from (Hua et al.,
1995), (Robeyst et al., 2007), data measured at CTU by TAMAir isothermal calorimeter and
finally, (Tamtsia et al., 2004) assuming potential heat 500 J/g. The released heat depends on
seven parameters that include the composition of clinker minerals, gypsum, fineness and water
to cement ratio (w/c), hereafter denoted as X1 – X7.

2.1. Modification of experimental data
As was mentioned above, the experimental data was measured at different times. It also means
that each sample has a different number of released heat measurements. For example, the
cement paste Mokra has 23 719 measurements with the average 0.01 hour time step, whereas
Tamtsia has only 5 measurements with the average 10.5 hour time step. For these reasons, the
linear interpolation (in some cases extrapolation) has been made to obtain released heat for all
cement paste samples at 0 - 600 hours with one hour steps. Hence we achieved same number
of measurements for all samples at same times.



Cement paste X1 X2 X3 X4 X5 X6 X7
C3S C2S C3A C4AF Gypsum w/c Fineness

Mass Mass Mass Mass Vol
% % % % % – m2/kg

Aalborg 0.6660 0.2380 0.0340 0.0040 0.0360 0.400 390
Princigallo 0.6688 0.1131 0.0616 0.0989 0.0510 0.375 530
BAM(Fontana) 0.5491 0.2239 0.0768 0.0712 0.0249 0.300 350
BoumizB35 0.6379 0.0894 0.0816 0.0614 0.0500 0.524 350
Hua 0.6880 0.0750 0.0810 0.0920 0.0400 0.420 400
Robeyst 0.6713 0.0664 0.0590 0.1068 0.0500 0.500 390
Mokra 0.6435 0.1181 0.0399 0.1187 0.0500 0.500 306
Tamtsia 0.5949 0.1603 0.0909 0.0956 0.0500 0.500 340

Table 1: Cement paste samples and appropriate parameters values.

2.2. Affinity hydration models

An affinity model provides a simple framework describing all stages of cement hydration.
The rate of hydration can be expressed by temperature-independent normalized chemical affinity
Ã(α)

dα

dt
= Ã(α) exp

(
− Ea

RT

)
, (1)

where T is an arbitrary constant temperature of hydration,R is the universal gas constant (8.314
Jmol−1K−1) and Ea is the apparent activation energy.

The affinity can be obtained experimentally easily from calorimetry. Isothermal calorimetry
measures a heat flow q(t) from a sample and quantifies, after an integration, the hydration heat
Q(t). Recognizing Q(t)/Qpot as degree of hydration DoH leads to an approximation which
has been slightly modified in (Šmilauer, 2010)

Ã(α) = B1

(
B2

α∞
+ α

)
(α∞ − α) exp

(
−η̄ α

α∞

)
(2)

where B1, B2 are coefficients to be calibrated, α∞ is an ultimate hydration degree and η̄ repre-
sents a microdiffusion of free water through formed hydrates. The parameters for our compu-
tations were fitted to B1 = 1.0 · 107 1/h, B2 = 2.0 · 10−4, α∞ = 0.9 and η̄ = 7.6. Since these
constants are used for all possible cement pastes, a general curve of DoH development has
been obtained by numerical integration of Equation 2 with one hour step producing the same
data spacing corresponding to interpolated experimental data. A potential hydration heat Qpot

can be obtained from the portland cements’ mineral composition

Qpot [J] = 517mC3S + 262mC2S + 1144mC3A + 725mC4AF (3)

with the masses in grams.
Although the value of potential heat is uniquely given by the amount of the first constituents

(X1-X4), see Equation 3, it cannot be directly used with the equation of the DoH development
(2) because of unknown B1, B2 coefficients for particular cement paste4. Therefore, we have
4 B1, B2 coefficients are somehow dependent on all input parameters, however, these relationships are unknown
and the search for them exceeds the scope of this work.



tried to find a general expression of Qpot with an addition of all input parameters, i.e. we search
for Qpot in

Q(X, t) = Qpot(X) ·DoH(t) (4)

that best fits the given data. Note that Qpot is independent on time, which is included through
DoH . Moreover, the goal of GP application was not only to create the approximation of exper-
imental data, but also to find out which parameters of cement paste are significant.

2.3. Application of GP

We have used a free GPLAB - a Genetic Programming Toolbox for MATLAB by Sara Silva (for
more details see http://gplab.sourceforge.net/). Since the GPLAB toolbox does
not include a solution of real numbers in symbolic regression in GP, the fist step was to solve
this problem. In Section 1.1. we have presented three possibilities how to treat real numbers.
After considering all circumstances (e.g. the way in which the GPLAB is programmed), we
decided to transform the GP tree into the standard mathematical form and to apply ordinary
least squares approach. Note that after the last step a GP solution is actually a polynomial with
real-valued coefficients that is used for evaluating the fitness of the corresponding tree.

The GPLAB offers many settings of Genetic Programming. Table 2 shows available options
from which several combinations have been tested. In the same table, the final setting that has
produced best performance in short runs is presented. Individual terms are explained in GPLAB
Manual (Silva, 2007).

Name Available Options Chosen Setting

Genetic Operators

Crossover CrossoverMutation
Shrink Mutation MutationSwap Mutation

Initialization Methods
Full

Ramped Half-and-HalfGrow
Ramped Half-and-Half

Expected Number of Offspring
Absolute

Rank85Rank85
Rank89

Sampling Methods

Roulette

Lexictour
SUS
Tournament
Lexictour
Doubletour

Elitism

Replace

ReplaceKeep Best
Half Elitism
Total Elitism

Survival of The Individuals
Fixed Popsize

Fixed PopsizeResources
Pivotfixe

Table 2: Available options of Genetic Programming and chosen setting.
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Figure 4: Correlation between input parameters and hydration heat.

The function set contained mathematical operators {+,−, ∗}, the terminal set consisted of
variables only. To avoid a bloat, a phenomenon consisting of an excessive code growth without
the corresponding improvement in fitness (Silva, 2007), the maximum of 14 nodes was set.
Finally, the population size of 500 individuals and the maximum number of generation of 100
was used.

2.4. Results
One optimization run was repeated 20 times for the sake of statistical relevance. In the last ten

runs we have increased the maximum number of generation to 150. Table 3 presents best trees
(without regression coefficients) along with appropriate coefficients of determination R2 (the
more coefficient of determination is closer to one the better a model is).
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Figure 5: Chosen trees. Another trees on the next page.



X5 X7

  plus

X1

X6 X5

  plus X4

  plus

  plus

  times

(c) Tree 15

X3 X5

  plus

X3 X6

  plus X7

  minus X1

  minus

  times

(d) Tree 17

X6 X3

  minus

X4 X5

  minus

  times

X6 X7

  plus X6

  plus

  times

(e) Tree 18

X6 X7

  minus

X7 X5

  plus

  times

X1 X6

  plus X6

  times

  times

(f) Tree 19

X5 X4

  plus

X7 X1

  plus

  times

X6 X5

  minus

  times

(g) Tree 20

Figure 5: Chosen trees.



Table 4: Coefficients of chosen trees.

Tree Number Figure Coefficients

10 Figure 5 (a)

−8.111895608905244e + 003
−1.331146211137479e + 004

2.166991906154698e + 004
2.094929318789972e + 004
3.146359656923416e + 004
−5.159089486510225e + 004

1.656638220837784e + 004
−2.502062966745425e + 003

14 Figure 5 (b)

9.243869108120686e + 005
1.092885651009214e + 005
−1.642636544079870e + 009
−1.958372097860084e + 008

6.851121570865510e + 004
8.144787171264200e + 003
−1.187129296385552e + 008
−1.420841261157905e + 007

15 Figure 5 (c)

1.458193574558148e + 001
−3.766630462198184e + 001

2.360524887640847e + 002
−1.259300390804292e + 001
−1.408600541438428e + 005

4.206396918009609e + 005
−2.631407720512701e + 006

1.420785625906093e + 005

17 Figure 5 (d)

−2.466383416090238e + 005
1.655046930775791e + 005
−3.180135520602344e + 002

2.394740423354011e + 005
−8.621761087793748e + 004
−1.899630841849877e + 005

3.756803751370741e + 002
−3.274857350250676e + 005

18 Figure 5 (e)

9.218232129081906e + 004
−2.625798901773804e + 002

1.536607745026151e + 005
−4.779718445863055e + 002

6.730594812736753e + 005
−1.929012856373917e + 003

1.210291943991558e + 006
−3.322982616715128e + 003

19 Figure 5 (f)

−6.073079781048356e + 001
1.827081619924882e + 002
1.038139056753326e + 006
−2.105423533983755e + 006
−3.724875411907906e− 001

6.622967088874029e− 001
3.459207518943232e + 003
−5.916622733643175e + 003

20 Figure 5 (g)

−1.125412110266874e + 003
−3.335362469264811e + 004
−1.426079068040327e + 005

1.005745437237222e + 007
6.555383350476078e + 002
1.636276852918849e + 004
1.622251159086200e + 005
−3.585797942507672e + 006

Next, we can estimate the effect of input parameters on the hydration heat from sensitivity
of the chemical model CEMHYD3D, see Figure 4. CEMHYD3D is a 3D portland cement



Figure 6: Approximation of experimental data.

hydration model based on cellular automata in combination with basic chemical reactions. For
more details about CEMHYD3D see, e.g. (Šmilauer, 2006). We have chosen seven best trees
according to sensitivities and coefficients of determination, see again Table 3. The best trees are
plotted in Figure 5 and appropriate coefficients are shown in Table 4.

We also created approximation of experimental data as shown in Figure 6. We present only
the tree 10 approximation of experimental data because other approximations are almost the
same and the differences are not visible.

3. Conclusions

The goal of this article was (i) to create an approximation of experimental data and (ii) to find
out which parameters of cement paste are significant. The fitted response surfaces are almost
perfect, however, a detailed examination of results shows that no tree contains all important in-
put variables (X1, X2, X3, X6 and X7). One of the missing variables X1 – X3 can be replaced
by X4 variable since X1 – X4 are linearly dependent constituting a volume unity. But still,
inclusion of this relationship into GP will surely not bring substantial improvement. Rough
enumeration of obtained trees over the allowable domain shows classical signs of overfitting.
Therefore, more data are needed or more strict selection mechanism within GP based on the
lenght and/or complexity of regression trees have to be employed. Finally, a problem of con-
stants’ placement within GP trees has been successfully solved, however, the OLS approach
limits dramatically the functions list. Therefore, our next step will be aimed at the ephemeral
random constant methodology.
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