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Summary: One type of integral is frequently met in various description of 
behaviour of polymer materials through molecular-based models starting with the 
classical Doi-Edwards one. The integrand in this integral for which an integrated 
region represents a solid angle is formed by a product of a unit vector (pointed at 
an element of this region) with a deformation gradient tensor. This product is 
raised to an exponent that is not usually an integer. The aim of this contribution is 
to derive substantially simplified expression for this integral respecting high 
accuracy of an approximation. 

 

1. Introduction 
In derivation of some basic rheological models the following integral has regularly 

appeared 
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where u′  is a unit vector pointing at element d2Ω', 1F −  is a deformation gradient tensor that 
preserves volume, integration is taken over a solid angle Ω'. An exponent s attains usually 
non-integer values. 

As the examples of appearance of this integral it is possible to mention 
-  for s=1/2 this integral is involved in the expression for a damping function in the classical 

monograph by Doi & Edwards (1978) where it corresponds to an average increase of the 
length of a molecule under affine deformation; 

-  in Mhetar & Archer (1999) the Partial Strand Extension model is considered, and based on 
molecular considerations we again run across the integral (1) with s=1/4; 

- in a model with partial retraction in Larson (1988) this integral with non-integer s appears 
as well. 

 
2. Analysis 

The integral (1) is related with central moments of a distorted normal distribution 
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through a term ‘distorted Gaussian function’ introduced in Boue et al. (1985) 
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where Γ represents the gamma function. The last equation is obtained by integrating over 
R'∈(0,∞). 

As far as the authors are aware the analytical form of the integral H(s) is known only for 
s=1 for which it can be found as convolution of an expression for stress for rubber elasticity, 
Eq. (8.B.1) in Lin (2003).  

The function H(s) is a scalar function of the Finger tensor 
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hence it can be expressed as a function of its invariants  
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and a scalar s. For the sake of generality we consider that the deformation does not have to 
preserve volume, thus both possibilities I3=1 and I3≠1 are taken into account. 

Function H(s) can be calculated in a straightforward way for all natural values (including 
zero), e.g. for s=0 and s=1 we obtain  

 
 H(0)=4π,  H(1)=4πI1/3   .  (6) 
 
For this it is convenient to use a coordinate system in which the Finger tensor 1C− is diagonal 

(with a2, b2, c2 as the elements on the diagonal), though the results are valid for any 1C− . The 
unit vector can be written as u' = (cosα·cosβ, cosα·sinβ, sinα), then the differential equals 
d2Ω' = cosαdαdβ, and integration is carried out over α∈[-π/2,π/2],  β∈[0,2π].  

Changing variable R R F′ = ⋅  (where F is the inverse deformation gradient tensor) in the 
first integral in rel.(3) it is possible to determine H(s) for some negative s.  

Let us consider a function that reflects asymptotical trend of H(s) 
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Asymptotically it behaves as a power function and for two given values K(s) and K(s+1) with 
an integer 1s  there is possible to find K(s+ξ) for 0 1ξ≤ ≤  
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As can be seen in Fig.1 the function H(ξ) in the interval [0,1] is still close to linear (in 
semi-log scale). Hence, using rels. (6) and (8) in this interval we can determine an 
approximate relation for H(ξ)  
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Figure 1  Behaviour of the functions H(s) and K(s). 

 
3. Conclusions 

The approximate relation to the integral H(s) in rel.(1) was derived. This approximation 
depends only on the first invariant I1 of the Finger tensor 1C− . 

Numerical tests have shown that deviation of the approximate relation (8) from the exact 
one is 6% on the average. As the error has systematic tendency, it can be substantially 
reduced by an introduction of a correction coefficient.  
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