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MODELLING OF BLADED DISK WITH DAMPING EFFECTS IN
SLIP SURFACES OF SHROUD

J. Kellner, V. Zeman, J. Sasek !

Summary: This paper is concentrated on modelling of friction effects in bladed
disk of steam turbine, which are realized by means of friction elements placed be-
tween blades shroud. The purpose of these elements is to decrease potential high
vibrations of bladed disk due to requirement of wide frequency operation range
and due to steam flow fluctuations. The model consist of 3D modelled disk and 1D
modelled blades. The stiffness coupling matrix and the damping matrix of friction
elements effects are obtained by forced vibration of bladed disk, relative movement
of adjacent shroud contact areas and by centrifugal forces of friction element.

1. Introduction

The requirements on wide frequency operation range and mainly on higher efficiency of steam
turbine blades lead to thinner profile, which is better in term of computation of fluid dynamics
(CFD) but blade dynamic properties get worse. The purpose of damping elements is to decrease
potential high amplitudes of blade vibration, which may occur due to resonances or big acting
forces. The aim of this article is to develop suitable methodology for vibration modelling of
damped blades. The method is based on discretization of 3D rotating disk Sasek and Hajzman
(2006) and 1D blades Kellner and Zeman (2006) by FEM. This contribution is the rudimentary
step for research of dynamic behaviour of the bladed disk with damping elements, which are
placed between blade shrouds using the harmonic (balance) linearization method. In future,
the damping will be involve due to slip contact interaction in inner couplings between blade
shrouds.

2. The mathematical modelling of the disk with blade foots

The rotating bladed disk (see fig. 1) can be generally decomposed into a disk (subsystem D)
and separated blades (subsystems B;,7 = 1,...,r). Disk is clamped on inner radius to rigid
shaft rotating with constant angular velocity w around its y axis. According to the derivation
presented in Rao (1989) the disk can be discretized in the rotating x y z coordinate system
using linear isoparametric hexahedral finite elements (see Sasek and Hajzman (2006)). The
equation of motion can be written in a configuration space defined by the vector
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Obrézek 1: Scheme of the rotating bladed disk.

of nodal j displacements (see fig. 1) in direction of rotating axis x, y, z. The disk nodes are
classified into free nodes (superscript F') and coupled nodes (superscript C') on the outer and
inner surface of the blade foots. The mathematical model of the disk was derived in Sasek and
Hajzman (2006) using Lagrange’s equations in the form

M piip(t) +wGpip(t) + (K — w’Kap) ap(t) = @ fp, 2)

where M p, K p and K ;p are symmetric mass, static stiffness and dynamic softening mat-
rices, skew-symmetric matrix wGp expresses gyroscopic effects and w? f , is force vector of
centrifugal load.

The vector of generalized coordinates of the disk can be partitioned according to (1) as
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The displacements of the coupled disk nodes on condition of rigid blade foots modelled
as a disk part can be expressed by displacements of referential nodes R; which are identical
with the first blade nodes j = 1 at blade foots (see fig. 1). This relation between coupled disk
displacements corresponding to blade ¢ and blade displacements in referential node R; is
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or shortly
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where z;, y;, z; are coordinates of the coupled disk node j on the rigid blade foots in coordinate
system x;, y;, 2; of the blade ¢ with the origin in the first blade node and «; is the angle between
the rotating disk axis x and the rotating blade axis x;. Coordinates of vector q, ; express the
referential node displacements in direction of blade rotating axes x;, y;, 2; and small turn angles
of the blade cross section in node F;.

The complete transformation between displacements of coupled nodes of the disk on the
blade foots and the referential nodes R; of all blades can be expressed in the matrix form
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q; = TD,RqR- (6)

The global transformation rectangular matrix T'p p € R n describes the linkage between
the disk (D) and the blade rim (). Coordinates of vector q 5 express displacements of the blade
nodes 7 =1, 2, ..., N (see below) in coordinate systems x;, v;, 2; (see fig. 1) in order of blades
(fori=1,2,...,7)

T
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where r is the blade number.

For illustration we present in table 1a number of lowest natural frequencies of the nonrotating
centrally clamped modeled disk (see fig. 2) with rigid blade foots but without blades. The nodes
which lie on the inner radius are fixed in all directions. The mode shapes corresponding to
natural frequencies are characterized by the number of nodal diameters (ND) and the number
of nodal circles (NC). the modal values of the disk with foots modelled as flexible differ from
the disk model with rigid foots very small Zeman et al., (2009).

Obrazek 2: Scheme of the disk with blade foots.



Frequencies of disk
with blade foots

[Hz] shape
1 234 B 1 MD
2 234 B 1 MD
3 249 8 1 MC
4 3067 2 MO
5 3067 2 MO
b 599 3 3 MND
7 599 3 3 MND

Tabulka 1: Modal analysis of the disk with rigid blade foots.

3. The blade rim with damping elements in shroud — contact stiffness

The single blades are modelled as one dimensional continuum linked with rigid shroud body in
its centre of gravity of last blade profile. The mathematical model of the uncoupled blade 7 with
shroud in configuration space of its blade node displacements (in the direction of rotating axes
Zi, Yi, 2; and of small angular displacements of the blade cross sections)

Qp; =l w005, 0,950, g, €RMLi=12,... rj=12_.. N (8
has the form Kellner and Zeman (2006), Kellner (2009)
Mpqp(t) + wGpqp,(t) + (KSB +wK,p— C‘JQI{clB) qp,(t) = W fg, ©)

where blade matrices M 5, K ;5, K ;5 and G 5 have an identical meaning with matrices of the
disk and matrix w? K, p expresses a centrifugal blade stiffening.

In this first modelling task is supposed, that the damping element is fast connected on the
sloping side with blade 7 4- 1 because the frictional force here is much higher than on the straight
(radial) side of the damping element. This model in the first step of modelling respects only a
contact stiffness between blade ¢ and damping element connected with following blade 7 + 1 on
the radial area. This contact stiffness is defined by contact stiffness matrix between blades 7 and
1+ 1

K = diag (0 0 ke kee kyy 0) (10)

&imirGi ?
expressing the constraint for the circumferential displacement and two rotations by means of
contact stiffness k. in normal direction to radial area §;7; and two flexural stiffnesses k¢e, Ky, -

This contact stiffness matrix is expressed in local contact coordinate system &;, 7;, (; placed
in central contact point B; of the ¢-th blade shroud. The coupling (deformation) energy between
two adjacent blades ¢ and ¢ + 1 (see fig. 3) is, in this contact coordinate system, expressed as
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where g, q,4,,, are vectors of blade 7 displacements in point B; and blade ¢ + 1 displacements

in pointA;; expressed in coordinate system &;, 7;, ¢;. The difference between g, — q4,,, re-
presents the relative motion of contact areas between two adjacent blades 7 and ¢ + 1.



The translation of blade local coordinate systems from point C; to point B; and from point
Cjiy1 to point A; 4 is expressed by translation matrices

0 Zx  —Yx
RY=| -2x 0 xx |, X=A4,,B. (12)
yx —rx 0

The translated local coordinate system is then rotated so, that the contact coordinate axis &; is
the radial according to bladed disk axis of rotation y;.

The vector of displacements in point 5; in the contact coordinate system is

uBi uBi
VB, TB 0 UB, up,
wBi wBi
qBi &miCi PB; - VB, qBi TiyYis2i?
1931- 0 TB 1931’ ¥B;
- ¢Bi = &iymisCi - - - wBi = Xq,%4,Yi

(13)
where the rotation matrix 7 between coordinate systems is specified by angle g between
radial axis x; of blade passing through point C; and radial axis ; passing through point B;.

cosép 0 —sindp
r5=| 0 1 0 . (14)
sindg 0 cosdp

Analogously the vector of displacements of point A, ; in this contact coordinate system is

Obrazek 3: Scheme of two adjacent blades and damping element.



defined as
. TA 0
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where
cosdy 0 sindy
0 1 0 (16)

TA =
—sindg 0 cosdy

The vector of blade 7 displacements in point 5; in coordinate system x;, y;, 2; is defined by
generalized displacements of point C; and by matrix of translation Rp
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According to (13) this vector in the contact coordinate system &;, 7;, (; has the form

. B 0 FE Rg
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Analogously, the vector of blade ¢ + 1 displacements in point A;,; in the contact coordinate

system &;, 1;, (; is expressed as

T
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We can now express the coupling energy, defined in (11)by means of generalized coordinates

of 7-th and 7 + 1-th blades in the form
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After multiplying the previous equation and from identity a(C] = K 'qp we obtain the
R T
stiffness matrix of coupling between two adjacent blades 7 and 7 + 1 in the form
ac, qc.,,
Kg,B —Kp5.a dp;
T1c(B) T1c(5) e
_KA,B KA,A qB,Z-‘rl
—_——
_TZ;K(CB)TB .. TaK(CB)TA dc;.,

where qp,; and gp,., are the vectors of all generalized displacements of blade ¢ and i-th.
Vectors g, and g, are the vectors of generalized displacements in the last node N on blade

¢ and ¢-th, respectively.



The whole coupling stiffness matrix between all blades (here 60 blades) is then

T T T T T
cy ey 9cs 9059 o6
Kaa+Kp B —Kp a —Ka B
—-Ka.B Kaa+Kpp - —Kp.a -
(R) . : - =
Kc “Ka B | Kaa+Kpgp —Kp A
Ka,a+Kp s —Kp.a
L —Kp a4 —Ka B Kaa+Kpp |

(22)

This contact stiffness matrix connects the blades together into a blade rim, whose equation
of motion is

M rqp(t) + wGrqR(t) + (KsR + K¢V + WK g — w2KdR> qp(t) =’ fr,  (23)
where all matrices (except K gR) are block-diagonal in the form
XR:diag(XB,XB,...,XB), X:M,G,Ks,Md,Kw,f. (24)

Obrazek 4: Scheme of the damping element.

The contact stiffness matrix K éB) defined in (10) depends on geometric and material cha-
racteristics of damping element. Mentioned above, the frictional force is much higher on the
slopping side, so at the first time the damping element is considered fast connect here. The
normal force in the contact on radial straight side is

myrw?

Ny = 25
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where mr is the damping element mass, w = %7 is the angular velocity and r is radius of

damping element centre of gravity. The contact stress is
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where £ is axial and b is radial damping element proportions and A, is the effective contact
area (see fig. 4), defined by real size of contact area, i.e. the high i multiply by coefficient ~;
etc.

The contact normal stiffness in direction ( is
No
5
where contact deformation 9,,,,,) = co® in g is defined, according to Riwin (1999), by contact

deformation coefficient ¢ and contact exponent p. Moments of flexion around axes &; and 7); can
be expressed as

ke = ——.10°[N/m)], (27)
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where unit contact stiffness k; is supposed constant and the angles of relative turning of interface
surfaces are marked as ¢ and 1J. Two flexural contact stiffnesses are then

1 1
ke (hm)?, gy = ke (bn)?. (29)

ke =
€719 12

4. The modelling of bladed disk with damping elements in blade shroud

The motion equations of the fictive undamped system assembled from uncoupled subsystems —
the central clamped disk with rigid blade roots and blade rim with damping elements in shroud

— in the configuration space
T T T
q= {(qg)) (¢5") gk (30)

can be formally rewritten as
Mg(t) + wGq(t) + (K. + 0K, — w’K,) q(t) = W’ . 31)
According to mathematical models (2) and (23), all matrices have the block-diagonal form
X =diag (Xp, Xr), X =M, G, K,,
K, = diag(K.p, K.z + K&, K., = diag(0, K.r) (32)

T
and f = [ fg, fﬁ . The vector of generalized coordinates g(¢) of the real bladed disk in
consequence of the couplings (6) can be transformed into new vector q in the form

a5’ E 0 (F)
quC) =| 0 Tpg [ 4o 1 or shortly g = T'q. (33)
qR 0 E qR

The mathematical model of the central clamped bladed disk with damping elements in blade
shroud in the configuration space q takes the form

Mq(t) + wGq(t) + (K, + 'K, - w’K4) q(t) =’ f, (34)
where X =T"XT, X = M,G, K, K, K, and f =T"f.



5. Modal analysis of bladed disk

The results of blade and shrouded blade modelling was compared with results from commercial
software ANSYS. For illustration we present in tab. 2 a number of lowest natural frequencies of
the one modeled blade with shroud fixed in the first node on the rigid disk with rigid blade roots.
The DOF number of 1D blade model is 36 without reduction (see fig. 5). The first and second
natural frequencies are sufficiently accurate, moreover the influence of rotation is practically
same also for higher frequencies.

Tabulka 2: Modal analysis of the blade with shroud in different FEM softwares.

Frequencies of blade with shroud
ANSYS | MATLAB | ANSYS | MATLAB
0 rpm 2000 rpm
142 141 153 151
282 282 288 286
970,5 1003 981,5 1011
1536 1533 1537 1533
1907 1969 1913 1974

Obrazek 5: Model in Ansys (left picture) and model scheme in MATLAB (right picture).

The next step of the testing of the presented method was modal analysis of blade rim, i.e. the
blades with shroud connected by contact stiffness matrix K f) of damping elements.The results
of modal analysis in the form of the some few lowest natural frequencies of the the blade rim

fixed in the first nodes of all blades into rigid disk with rigid blade roots are presented in tab. 3.

All blades of the blade rim with damping elements are connected with disk rigid foots in the
first nodes and the mathematical model (34) of the bladed disk is used for testing. Its modal
analysis is performed for undermentioned parameters:
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Tabulka 3: Modal analysis of the blade rim.

Frequencies of blade rim
Fixed in 1st nodes of | Fixed in 1st nodes
blades of blades
0 rpm 2000 rpm
[Hz] number [Hz] number
142 60x 151 60x
291 1x 295 1x
618 2X 620 2X
1003 60x 1011 60x
1068 2x 1069 2x
1390 2X 1392 2x

(angle of damping element slope)

(angle between radial blade axis x;,; and axis &;)

(angle between radial blade axis x; and axis &;)

(mass of damping element)

(distance of the centre of gravity of damping element from the rotation axis)
(contact deformation coefficient )

(contact exponent)

(radial proportion of damping element)

(axial proportion of damping element)

(coefficient of contact area reduction in radial proportion)
(coefficient of contact area reduction in axial direction).

The some few lowest natural frequencies of the central clamped blade disk with damping
elements in the blade shroud are presented in tab. 4. The corresponding mode shapes are cha-
racterized by the number of nodal diameters N D and nodal circles NC|, i.e. the number of
lines (resp. circles) with zero amplitude. The graphic demonstration of mode shapes is available
but in this paper in gray-scale there are presented for illustration only chosen shapes depicted
without shroud and damping elements (see fig. 6 - 7).

Tabulka 4: Eigenfrequencies of bladed disk - clamped on inner radius.

Frequencies of bladed disk
Clamped in inner disk radius

0 rpm 2000 rpm
[Hz]  |number| shape [Hz]  |number| shape
69,5 2x 1 ND 75,9 2 1 ND
71,7 1x 1 NC 78,3 1 1 NC
84,6 2X 2ND 91,2 2 2ND
113,2 2X 3 ND 121,8 2 3 ND
125,5 2X 4 ND 135,0 2 4 ND
130,1 2X 5ND 140,0 2 5ND

6. Damping effects in slip surfaces on shroud

Previously mentioned, the damping element is in this paper fast connected on the slope contact
area and the friction effects are realized only on the radial side of the damping element. The



69.5Hz Magnitude
0.385

0.289

0.192

0.0962

0.000
Obréazek 6: Mode shape corresponding to Obréazek 7: Mode shape corresponding to
eigenfrequency 69,5 Hz - 1 ND for non- eigenfrequency 71,7 Hz - 0 ND for non-
rotating bladed disk. rotating bladed disk.

relative movement of opposite contact areas (the radial side of i-th element and the contact area
of the adjacent blade shroud) is characterized by an ellipse in 7;&; plane (fig. 4) and can be
turned by an angle «; (fig. 8), the ellipse axes of this movement are a;, b;. The matrix B,, =
diag(bg,, by,, by, ) is an equivalent damping matrix of friction forces between i-th blade damping

element and adjacent shroud. This matrix is defined in local coordinate system fmz C, connected
with axes of movement ellipse (fig. 9).
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between the damping element and of dampers placed in axes of rela-
adjacent shroud during one period tive movement ellipse..

of excitation.

The vector of relative slip velocities defined in contact plane @ between ¢-th and ¢ + 1-th
blades is

Ce; gg éi

ci=| ¢y | =| Mg |do,— | My | e, = Trodo, — Trade,.,- (53)
T T
Cop, CB CA



The transformation matrices 754 and 7 are in the form

cosdy 0 sindy 0 oSOz — SINOAT 4 0 '
Tra=| 0 1 0 —2a 0 a4 | =1|ms|, (6
0 0 0 —sindy 0 cos 04 ¢
cosdp 0 —sindp 0 cosdpzp 0 ¢l
=] 0 1 0 —2p 0 0 |=|mng|- 37)
0 0 0 sindp 0 cos0p Cg

Because the calculation of B; must be done in the coordinate system connected with axes of

—

movement ellipse, the vector of slip velocities defined in this revolved contact plane 77252 is

Ce, cosa; sina; 0 Ce,
¢i=| ¢y, | =] —sina; cosa; 0 Cpi | = Ta,Ci- (38)
C\qgi 0 0 1 Cop,

The dissipation function of friction effects in i-th contact area is by using the equivalent damping
(defined by method of equivalent linearization) expressed in form

1 1 1 -
Ri i+1 = *C}TBS‘C:Z‘ = *CT ’TT_Be,'Ta. C;, — *CTBZ'CZ‘ (39)
) 2 7 7 2 (2 (673 (3 7 2 (2
B.
1 T ~

- 2 (TFBQCi - TFAqCH—l) B, (TFchi o TFAqCH-l) )

The complete dissipation energy of all damping elements is then
60 60 . ~ 1 ~
R= Z Riiv1 = Z <2qginTvBBei7'FBin — 40, TipBiTrade,,, + 2Qgi+1T£ABeiTFAQCi+1)
i=1 i=1 40)
where ¢, = qc,-
After multiplying the previous equation and from identity %Ri-i‘;“ = Bg)q Rr» W€ obtain

the matrix of equivalent damping between two adjacent blades ¢ and ¢ + 1 in rotating global
coordinate system in the form

T T
dc, qci+1
4B,
T T ’
BE _ } @D
by
¢ dp,i+1
T T )
_TFABeiTFB TFABeiTFA qci+1

where g ; and g ;. are the vectors of all generalized displacements of blade i-th and ¢ + 1-th.
Vectors g, and g ;. are the vectors of generalized displacements in the last node N on blade
1 and ¢-th, respectively.



Because the individual matrices Bi?) have different calculation (see below), the whole mat-
rix of equivalent damping between all blades is then for 60 blades

T T T

dcy dc, dcy
T 5 TR A —~
TrpBe1TFB + TpaBeggTra | - —TppBe  TFA ~

T 5 A A A=
—TrpaBe,TFB | TpaBeTFA + TppBesTrEB | - —TrpBeaTFA

R) : : :
B! = T & T A A =
e —TpaBesTFB | TppAeyTFA + TppBesTFB | R
T B ~
L - —m L BegoTrA ~

@)

After this step, the equation of motion (31) can be completed by equivalent damping matrix
obtained from previous equation

Mg(t) + (B + wG) (t) + (K. + W’ K, - *K,) q(t) = f(t), (43)

where
B, = diag(0 B'%). (44)

The algorithm of B,, and B®) calculation is

e Calculate of the vector of complex amplitudes g as a response on the acting forces using
model (43) with equivalent damping (for first iteration is B, = 0).

e Find the axes of movement ellipse for every damping element and the angle of ellipse
rotation, e.g. b;, a; and o; for v = 1,2,...,r, where r is number of blades, i.e. number of
damping elements in shroud. The formula is:

- a; = |77£‘~101 - ngqczuﬁll’
- Q= |ngcz B ngci-ﬂ"

e Calculate the elements bg,, by, and bg, of matrices B;:

__ 4T

- bgl - ﬂ'aiwk’
__ 4T

bm’  mhijwk’
_ _4M

- bq}i T oadwy

e From previous results the local equivalent damping matrix of ¢-th element is

. be, cos® a; + by, sin® oy (be, — by,) cosaysina; 0
B., = | (be —by,)cosa;sina; be sin®a; + by, cos>c; 0| . (45)
0 0 by,

7



e Assemble the global equivalent damping matrix of friction forces in shroud BgR).
e Rerun whole algorithm with ngﬁ placed in (43) until the solution results don’t converge.

The friction force 7' is defined by damping element normal force /Ny induced by centrifugal
load and by friction coefficient f: T" = N, f, the friction moment M = % fresNo, where 7.y is
the effective radius of friction moment.

The forces acting on blades are induced by steam flow fluctuations caused by nozzles (stati-
onary blades). The frequency of this harmonic load is wy = w * ng, where ng is the number of
nozzles. That’s why the rotating blade passes ng fluctuations per revolute, which can be appro-
ximate by sinusoidal force. This force has axial F, and tangential F},, components, whereas
the phase delay angle between these components is ¢ and can be obtained from CFD analysis.
The forces acting on the blade are assumed to identical in every blade node, i.e. Fyz,; = Fuz,,, 1>
where 7 is blade index, 7 € 1,2,...,r and j is index of blade node, 7 € 1,2,..., N.

Faxlj = Fax COS(Wkt)a Ftanlj = Ftan cos(wkt - 90)7
Foy, = F,; cos(wg(t + At)), Flany; = Fran cos(wi(t + At) — @), (46)
Fowy = Fagcos(wi(t + (i — 1)At)), Fian,; = Fian cos(wi(t + (i — 1)At) — ),

where At is the time delay of passing adjacent blades around the same nozzle. This time delay is
equal 2%, where w is the angular speed of bladed disk rotation. Using w = wy/n, the equations

rWw

in (46) can be expressed as

2 2
Fae,; = Fax cos(wit + (i — 1)wkl), Fian,; = Fian cos(wit + (1 — 1)wk—7T —p), @7
rw rw
Pi Yi=pi—p
i.e. in complex form
Faxij = Famewgt—ﬂpia Ftanij = FtanBWkt+¢i- (43)

The complex vector of one blade excitation is then

Filt) = e (49)
where
fi=F.[010000...010000...)" €% — F,, [001000...001000...]" . (50)

The nonzeros elements express the existing actuating force component, in first bracket it is in the
axial direction (second DOF of every node), in second bracket it is in tangetial direction (third
DOF of every node). The complex force vector of the whole blade rim, respectively bladed disk,

is then
T

Fa)=|F Fo o Fo| @ resp (1) = (07 Frle. (51)
The results for fourth iteration of forced vibration follows. The system of bladed disk with
damping elements is in shroud coupled together by coupling stiffness matrix K(CR) in normal
direction to contact area (that’s why the tangential displacements of shrouds in fig. 11 are “smo-
oth”), but in other DOF can slip occur (see axial displacements of shrouds in fig. 10). The forced
vibration in time are displayed in fig. 12 and 13.
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7. Conclusion

The presented method and the corresponding developed software enables to create small com-
putational consuming model of the bladed disk for nonlinear task. The disk is modelled as a
three dimensional rotating continuum and blades as a one dimensional continuum with rigid
shroud connected by damping elements. The displacements of the coupled disk nodes on the
rigid blade foots are eliminated by means of displacements in the first blade nodes. The con-
tact stiffnesses of a damping elements supported between blade shroud are respected in sliding
interface surfaces. In presented stage of modelling the contact surfaces are considered as smo-
oth. The method allows to introduce continuously distributed centrifugal and gyroscopic effects
which influence the bladed disk modal properties. Modal values of particular components of the
complete model were compared with modal values calculated using commercial software. The
modal accurance is good. For including the friction effects of damping elements in shroud, an
equivalent linearization method is used for creation the equivalent damping matrix and the for-
ced vibration analysis is introduced. The model doesn’t use the cyclic symmetry and is prepared
for system with different blades (with and without shroud). In future, the input parameters can
be specified by collateral detailed analysis of two blades with one damping element and from
experiment.

The new approach to bladed disk vibration modelling was tested for undamped modeled
bladed disk with sixty blades and damping elements. From a modal analysis follows that the
developed software in MATLAB code based on presented methodology is acceptable for a
modelling of damping effects.
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