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Summary: The paper deals with approximation of spatial distribution of mean 
downstream velocity of sub-critical turbulent flow in an open rectangular channel 
with rough bed. New formulae of the local downstream velocity component Vx(y, 
z) dependence on the vertical coordinate y and lateral coordinate z were 
introduced. The vertical velocity profile was approximated by log-law and the 
power law was used to describe the effect of channel walls on the horizontal 
velocity profile. The suggested formulae of spatial downstream velocity 
component distribution were calibrated and verified using the experimental data 
obtained by PIV method. The proposed approximation is in good agreement with 
experimental data, the difference between experimental and calculated data is in 
range of 5 - 10% except the area near the channel’s corners and water level, 
where the maximal difference reaches 60% and 30% of experimental values, 
respectively. 

 

Introduction 
A velocity distribution of one-dimensional flow in open channels is traditionally described by 
a log-law or by a power law. The log-law and the power law can be used not only for vertical 
velocity distribution, but also for a lateral distribution of local velocity. 

In this paper we shall suppose that the spatial velocity distribution can be approximated by 
the log-law for the vertical velocity profile and by the power law for the horizontal velocity 
profile and for the description of the channel walls effect.  

A logarithmic law and power-law (see, e.g. Schlichting, 1979): 
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are usually used for one-dimensional turbulent sub-critical flow in the wide channel, i.e. for 
the flow where the effect of channel walls can be neglected. In Eqs. (1) and (2) u is local 
horizontal velocity in downstream direction,  is shear velocity,  is Kármán *u 0.41κ =
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constant, y is vertical coordinate, 0 *0.11 / 0.033 sy u kν= +  is a distance from the wall, where u 
= 0 (sometimes called also hydraulic roughness length), ν is kinematical viscosity, ks is 
hydraulic roughness of the channel bed, δ is the distance, where velocity is maximum umax, b 
is the exponent of power law. A value b changes from 1/6 to 1/10 depending on Reynolds 
number. For hydraulically smooth turbulent flow regime b = 1/7 is generally used. Based on 
these equations we suggest the below mentioned equations of spatial distribution of 
downstream velocity in the rectangular open channel. 

The first suggested equation contains the log-law (Eq. (1)) and power law (Eq. (2)), the 
first for the description of vertical, the second for the horizontal velocity distribution  
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where zmax = B/2 is half of channel width, z is lateral coordinate, and z = 0 is the centre of the 
channel, the parameter b = b (Re) is a function of Reynolds number. 

Cheng (2007) suggests the relationship b = b (Re) for pipe flow 

 , (4) 0.431/(1.37 )b f −=

where 0.250.316f Re−=  is Blasius friction factor, Re = Vav D /ν is Reynolds number,  is the 
pipe diameter, and Vav is average velocity. 

D

Similarly Zagarola et al. (1997) determined the relationship b = b (Re) for the pipe flow 

 
( )2

1.085 6.535
ln ln

b
Re Re

= + . (5) 

Both above mentioned dependences b = b (Re) were developed for the pipe flow. We shall 
try to use them also for the open channel flow, however we shall define Reynolds number  
Re = RhVav /ν, i.e. based on hydraulic radius Rh instead pipe diameter D. 

The description of the velocity distribution in horizontal direction by Eq. (3) has one 
weakness - the Eq. (3) is not smooth in the centre of channel. 

The second equation for the local downstream velocity distribution in open channel, which 
in accordance with the theory of turbulent flow is smooth in the centre of the channel, is 
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We assume that parameter c is also a function of Reynolds number, i.e. c = c (Re) and its 
value can be evaluated from the evaluation of experimental data. 

Unfortunately, Eq. (6) does not fit well the experimental points in the central part of the 
channel. It predicts significantly higher values than Eq. (3) and the experimentally determined 
velocity vertical and horizontal profiles, see Figures. (1) and (2). In order to decrease the 
difference between experimental and predicted values a quadratic term was subtracted from 
the equation Eq. (6) 
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The Eq. (7) is also smooth in the central part of the channel; the constant a, can be 
determined experimentally. 

 

Velocity profile approximation 
The measuring of the flow velocity in the rectangular channel with rough bed was conducted 
by the Particle Image Velocimetry (PIV) method. The local velocity values were measured 
only in the left half of the channel, since we supposed a symmetrical distribution of flow 
velocity in both channel’s parts. A flow regime was a backwater. 

The hydraulic parameters of the water flow in the channel were following: width of the 
channel was B = 0.25 m, depth of water in the channel was  m, slope of the 
channel was S = 0.001, channel’s ratio width/depth was B/h = 4.3, bed roughness was 

 m, flow rate was Q = 4 l/s, water temperature was about 20°C, kinematical 
viscosity of water at 20°C was 

25.94 10h −= ⋅

30.8 10sk −= ⋅
6  1.307 10ν −= ⋅  m2/s. Hydraulic radius of the channel was 

24.03 10
2h

BhR
h B

−= = ⋅
+

 m and average velocity Vav = Q/(Bh) = 0.269 m/s, the Reynolds 

number was Re = RhVav /ν  = 10800. 

The vertical profiles of velocity are presented in Figure 1. By fitting log-law by least-
squares method the values of shear velocity ( ) 2

* 1.69 0.01 10u −= ± ⋅  m/s, and hydraulic 

roughness length  m were determined. 5
0 3.3 10y −= ⋅
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Figure 1. Vertical velocity profiles at 
different distances from the wall and fit by 
Eq. (1) with  m/s, and 

 m. 
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Figure 2. Horizontal velocity profiles at 
different horizontal planes. 

 



Experimental horizontal velocity profiles at different levels are presented in Figure 2. 
Since we have at this time available only one complex measurement of the spatial velocity 
distribution in the channel under given conditions, we chose the measured points in the 
horizontal plane y = 35 mm (i.e. about 60% of the water depth) for calibration of the 
suggested Eqs. (3), (6), and (7). The remaining experimental data, i.e. measurement in 
horizontal planes at level y = 55 mm, 44 mm, and 26 mm, respectively, were used for the 
verifications. The least-squares method fits of experimental velocity values at the depth 
y = 35 mm by Eqs. (3), (6), and (7) are presented in Figure 3. We obtained values of the 
exponents b = 0.082, c = 13.12, and a = 0.05 mm. 

The value of exponent b calculated according to Eqs. (4) and (5) is b = 0.164 and b = 
0.193, respectively; the value of b obtained by the fit of experimental data is about two times 
less then those determined by calculation according to Eqs. (4) and (5). 
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Figure 3. Experimental values of velocity 
and their fits by Eqs. (3), (6), and (7). 

Figure 4. Velocity calculated according to 
Eqs. (3), (6), and (7). 
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Figure 5. Velocity calculated according to 
Eqs. (3), (6), and (7). 

Figure 6. Velocity calculated according to 
Eqs. (3), (6), and (7). 

 

Later the following values of exponents of Eqs. (3), (6), and (7), i.e.c = 13.12, b = 0.082, 
b = 0.164, and b = 0.193, and a = 0.05 will be used, and the horizontal velocity profile at 
various flow depth will be constructed. In Figures 4, 5, 6 the experimental values of the local 



velocity at y = 55 mm, y = 44 mm, and y = 26 mm and their approximation by Eqs. (3), (6), 
and (7) are illustrated. 

From the Figures 4, 5, 6 it follows that the approximation of the velocity spatial 
distribution by Eq. (3) in horizontal plane at the level y = 55 mm (for calculated values of 
parameter b = 0.164, b = 0.193) agrees well with experimental data, the maximal difference is 
4% and 6.6%, respectively. When the parameters of Eqs. (3), (6), and (7) are determined by 
fit of experimental data (b = 0.082, c = 13.12, and c = 13.12, a = 0.05), the maximal 
difference increases to 18%, 25%, and 13%, respectively. However, in the horizontal plane at 
the level y = 44 mm the approximation with parameter (b = 0.082) agrees well with 
experimental data, maximal difference is less than 6%, for the remaining values of the 
exponents (b = 0.164, b = 0.193, c = 13.12, and c = 13.12, a = 0.05) the maximal difference 
increases to 11%, 16%, 9.4%, and 14%, respectively. In the horizontal plane at the level y = 
26 mm the approximation of the velocity distribution with parameters (b = 0.082, c = 13.12) 
agrees very well with experimental data, the maximal difference is 4% and 7%, respectively, 
for the approximation with parameters (b = 0.164, b = 0.193, and c = 13.12, a = 0.05) the 
maximal difference increases up to 19%, 24%, and 23%, respectively. 

The following conclusion follows from the foregoing description: Eq. (3) with exponent 
b = 0.082, Eq. (6) with exponent c = 13.12, and Eq. (7) with exponent c = 13.12 and 
parameter a = 0.05 can be used for the description of spatial distribution of the local 
downstream velocity in open channel. Unfortunately, the curves with exponents calculated 
according to Eqs. (4) and (5), i.e. b = 0.164, b = 0.193 lie far from experimental points, and so 
they cannot be used for the description of spatial distribution of velocity. 

 

Figure 7. Experimental vertical profiles of  
the downstream velocity in open channel. 

Figure 8. Approximation of the downstream 
velocity distribution by Eq. (3), b = 0.082. 



Figure 9. Approximation of the downstream 
velocity distribution by Eq. (6), c = 13.12. 

Figure 10. Approximation of the 
downstream velocity distribution by Eq. (7), 
c = 13.12, a = 0.05. 

The spatial experimental profile and profile approximated by Eqs. (3), (6), and (7) are 
presented in the Figures 7, 8, 9, 10. 

The isolines of differences between the experimental values Vexp and approximation of 
local downstream velocity Vcalc (i.e. the values 100.(Vcalc - Vexp)/ Vexp, [%]), are presented in 
Figure 11 for approximation according to Eqs. (3), (6), and (7). 

 

Figure 11. The difference of the experimental and approximated velocity values - left 
Eq. (3) b = 0.082; in the middle Eq. (6), c = 13.12; right - Eq. (7), c = 13.12, a = 0.05 (in %)



 

In the case of Eq. (6) the difference reaches 30% near the water-level and maximum 60% 
near the corners of channel; in the centre of channel (up to z ≈ 60 mm) the difference is less 
than 5 %. In the case of Eq. (3) the difference is less than 5% even near the walls, except the 
region close to the channel bed and water level. In the case of equation (7) the difference in 
central part of the channel is less than 5%, near the water-level the differences reach about 
20% (maximum 30%) similarly as for the other approximations. Near the corners of the 
channel the differences reach up to 40%, while for approximation by Eqs. (3) and (6) the 
difference reaches up to 60%. The considerable less values of the experimental local velocity 
in the corners is probably due to the retarding effect of the walls in the corners of channel.  

It can be concluded that Eq. (7) described best the velocity profile in the open channel, if 
the parameters a and c were evaluated from the experimental data. 

 

 

Conclusions 
For the description of spatial downstream velocity distribution in open channel a function 
combined from a log-law (for the vertical velocity distribution) and a power law (for 
horizontal velocity distribution) was used.  

Analysis of the local downstream velocity approximation by Eqs. (3), (6), and (7) shows 
that all three equations give a relatively good agreement with experiments if their parameters 
are determined experimentally. The difference between the experimental and calculated data 
is less than 5 % in the central part of the channel, in channel’s corners and close to water level 
the differences increase up to 30 - 60%, respectively, probably due to the retarding effect of 
the walls.  

Approximation of the downstream velocity profile by Eq. (7), which is the modified 
Eq. (6) with an added quadratic term, approximate very well the velocity distribution, and on 
the contrary to Eq. (3), it is smooth in centre of the channel. 

The dependence of parameter c (in Eqs. (6) and (7)) on Reynolds number should be 
determined experimentally. The dependence of parameter b (Eqs. (4) and (5)) on Reynolds 
number was developed for the pipes flow only, they should be determined for the open 
channels to obtain more precise values. Also dependence of parameters c and a of Eqs. (6) 
and (7) on Reynolds number should be proved and determined experimentally. However, 
more experimental data will be necessary to determine the general relationship for the 
mentioned parameters. 
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