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Summary: The pendulum damper modelled as a two degree of freedom strongly
non-linear auto-parametric system is investigated using an approximate differen-
tial system. Uni-directional harmonic external excitation at the suspension point is
considered. The resonance phenomenon cannot be described using the semi-trivial
solution. In this contribution, nature of the numerical solution in the state of reso-
nance is thoroughly investigated as a preliminary work for the detailed analytical
study. Stationary and non-stationary (quasiperiodic) character of the resonance
solution is determined and characterised. General form of a solution is proposed.

Figure 1: The pendulum
and coordinate systems.

1. Introduction

Many structures encountered in the civil and mechanical engineer-
ing are equipped with various devices for reducing dynamic re-
sponse component due to external excitations. Among other low
cost passive systems the pendulum dampers are still very popular
for their reliability and simple maintenance, see e.g. (Haxton &
Barr, 1972). However the dynamic behaviour of such a pendulum
is significantly more complex than it is supposed by a widely used
simple linear SDOF model working in the (xz) vertical plane only,
see Figure 1. The conventional linear model is satisfactory only if
the kinematic excitation a(t) introduced at the suspension point
is very small in amplitude and if its frequency remains outside a
resonance frequency domain.

The authors have presented several papers on the topic, see Náprstek & Fischer (2007-2009)
and Fischer & Náprstek (2009). However, the detailed description of the behaviour in the state
of the strong resonance is not available yet. In this state the system exhibits quasi-periodic
or other non-stationary behaviour. Amplitudes of the longitudinal and transversal motions are
comparable. The both amplitudes do not converge to any constants and remain quasi-periodical
with fluctuating internal structure within individual periods. Behaviour of the amplitudes of
both components of the motion is studied in the presented paper.
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2. System setup and its basic properties

Using the mechanical energy balance conditions and the Lagrangian principle one can derive
the differential system describing the model in the Figure 1:
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where r - suspension length of the pendulum
ωb - relative scale of the approximate linear damping equivalent in both components ξ, ζ
ω2

0 = g/r
a = a(t) - kinematic excitation at the suspension point.

The semi-trivial solution is searched in the form of

ξ0 = ac cosωt+ as sinωt ; ζ0 = 0 (2)

and the excitation is assumed to be harmonic a(t) = a0 sinωt (see Tondl (1991) for details). The
coefficients ac, as in general should be considered as functions of time: ac = ac(t), as = as(t).
If a stationary solution exists for a given excitation frequency ω, then ac, as should converge to
constants for increasing t → ∞. For this reason coefficients ac, as can be considered constant
only under special conditions when stable stationary response can be expected.

Substituting (2) into Eq. (1), multiplying it by sin(ωt) or cos(ωt) and integrating the resulting
expressions over the interval t ∈ (0, 2π/ω) (so called harmonic balance operation) results in an
algebraic system consisting of two equations. From them one can obtain the equation for the
amplitude of the response (R2
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The semi-trivial solution (2) can be endowed with small (in the meaning of a norm) pertur-
bations u, v in both coordinates:

ξ = ξ0 + u u = u(t) = uc cosωt+ us sinωt
ζ = 0 + v v = v(t) = vc cosωt+ vs sinωt

(4)

As the perturbations are expected to be small, only the first powers of u, v and their derivatives
are kept after inserting expressions (4) into Eq. (1). After the harmonic balance operation and
some algebra one obtains two homogeneous linear algebraic systems for uc, us and vc, vs. Their
non-trivial solution exists only if it holds:
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where
Ω1 = 3ω2

0 − 4ω2 ; Ω2 = ω2
0 − ω2 ; Ω3 = ω2

0 + 4ω2 ; Ω4 = ω2
0 − 4ω2

The Eqs (5-6) can be interpreted as limits dividing the plane (R2
0, ω) into the stable and unstable

domains. For given parameters r, ωb, a0 the unstable interval of excitation frequency is defined
by the position of the intersections of the resonance curve (3) with the corresponding stability
limits (5-6).



3. Response in the resonance domain

Let us try to assume a more general expressions as the basic solution:

ξ(t) = ac(t) cosωt+ as(t) sinωt ; ζ(t) = bc(t) cosωt+ bs(t) sinωt (7)

Increasing the number of unknown functions to four, one can exploit a possibility to formulate
two arbitrarily selectable additional conditions. Then the following expressions for the first
derivatives of the general solution (7) can be stated:

ξ̇(t) = −acω sinωt+ asω cosωt ; ζ̇(t) = −bcω sinωt+ bsω cosωt (8)

where ac = ac(t), as = as(t), bc = bc(t), bs = bs(t).
Using the expressions (7) and (8) in the differential system (1) and applying the operation of

the harmonic balance, the differential system for amplitudes ac, as, bc, bs arises:
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where it has been denoted

R2
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s + b2c + b2s ; S2

A = asbc − acbs (10)

The system matrix A depends only on ac, as, bc, bs, ω and has the form of
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The explicit solution of Eqs (9) is generally not possible in the resonance interval. However, it
can be seen from the numerical analysis, that at least part of the resonance interval (interval of
the non-trivial transversal response) can be described by a steady state (stationary) solution.

For the case, where the stationary solution occurs, one can neglect the left hand side of the
Eq. (9). Indeed, if the response is stationary, the amplitudes ac, as, bc, bs are constant and thus
their derivatives vanish. The Eq. (9) reduces itself into the algebraic system, which gives the
relation between R2

A, S2
A and ω
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The case, where the solution is non-stationary, is much more interesting. However, currently

only the numerical analysis is available.
Figure 2 shows the results of direct simulation of the Eq. (1) for several excitation frequen-

cies ω from the resonance interval. Four cases in the Figure 2 correspond to the non-stationary
response: ω = 3.0 to ω = 3.15. In this cases a periodic exchange of energy between com-
ponents occurs. The length of a such period depends on the excitation frequency. This phe-
nomenon will be studied in detail later. The case where ω = 3.2 corresponds to the stationary



Figure 2: The time histories of pendulum’s response, obtained using the direct simulation for
various excitation frequencies.
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Figure 3: A) Numerical (dotted) and analytical resonance curves (blue) in ξ component, stability
limits Eqs (5-6) (red and green curves respectively)
B) Numerical resonance curve in ζ component
C) Total amplitude

√
ξ2 + ζ2 (dotted - numerical computation, solid red - RA from Eq. (12),

solid green - SA from Eq. (12)
The gray area indicates the complete resonance interval

but spatial response, the transversal component ζ is significant, but the overall movement is
governed by the single frequency ω.

Figure 3A shows the resonance curve, obtained by means of the numerical solution of the
differential system (1) (ξ component - dotted curve), the resonance curve of the semi-trivial
solution (3) (blue line) and stability limits (5-6) (red and green curves respectively). Figure 3B
shows the numerically obtained resonance curve of the transversal motion (ζ component - dotted
curve). Figure 3C shows the course of the total amplitude

√
ξ2 + ζ2 (dotted curve - numerical

computation), together with the theoretically obtained one by means of the Eq. (12). Let us
emphasise the good agreement for theoretical and numerical values of the total amplitude SA in
the second part of the resonance interval. In this part, the assumption of stationary character of
the system response is fulfilled ( ȧc = ȧs = ḃc = ḃs = 0 ) and the movement of the pendulum
forms the limit cycle in the horizontal ξ, ζ plane.

Numerical solution of the full system (9) for the unknown amplitudes gives very interesting
results. Firstly, the numerical solution allows to clearly distinguish between stationary and non-
stationary part of resonance interval. The stationary part is characterised by the rapid conver-
gence of the individual amplitudes ac, as, bc, bs to constants. This corresponds to the existence
of the simple limit cycle, see the case ω = 3.2 in the Figure 4.

In the non-stationary part of the resonance interval the amplitudes ac, as, bc, bs seem to have
form of biased periodic functions. Their lowest frequency depends on the excitation frequency.
However, for the individual values of the excitation frequency ω the amplitudes contain also
different number of super-harmonic components. Time histories of the computed amplitudes
for several excitation frequencies are depicted in the Figure 4. The excitation frequencies were
selected from the first part of the resonance interval, where the response is non-stationary and
the Eq. (12) cannot be used. It can be seen from the Figure 4, that the periodic character of the
individual components is rather complicated.

The Figure 5 shows results of the Fourier analysis of the individual amplitudes ac, as, bc, bs
for different excitation frequencies. It comes to light, that the general form of any amplitude
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Figure 4: The time histories of non-stationary amplitudes ac, as, bc, bs computed according to
Eq. (9). Mutual plot of amplitudes of the both components a2

c + a2
s vs. b2c + b2s is on the right

hand side.



Figure 5: Plot of the significant parts of the periodograms of the individual components
ac, as, bc, bs for increasing excitation frequency ω. Actual values of the Fourier coefficients
were clipped at value 5.

should be sought in the form of finite Fourier series:

x(t) = x0

N∑
i=n

αxi cos (nωF t) + βxi sin (nωF t) (13)

where x stands for ac, as, bc, bs.
Figures 6 and 7 depict the pattern of non-zero Fourier coefficients, computed for increasing

excitation frequency. Numerical solution of the Eq. (9) has been used, followed by the numeri-
cal Fourier transform. While the Figure 6 includes coefficients exceeding threshold of 1.5 in the
absolute value, in the Figure 7 is the threshold taken 0.5. Unfortunately, the dependence of ωF

on the excitation frequency ω is not linear, although a roughly linear trend can be seen from the
Figures 6 and 7. On the other hand, only a limited number of Fourier coefficients is necessary
for satisfactory description of the general form solution.

Assuming, e.g. N = 2 in Eq. (13) and introducing (13) into (9) as the substitution for
unknowns ac, as, bc, bs, a system of 20 non-linear algebraic equations can be obtained. (4 equa-
tions by setting t = 0 and 16 using the harmonic ballance approach). However, number of
equations is 21, (4 times x0, αx1, αx2, βx1, βx2 and ωF ), the system is under-determined and one
additional condition should be introduced in the future.



Figure 6: Pattern of the non-zero Fourier coefficients with respect to the excitation frequency of
the individual components ac, as, bc, bs. Each point corresponds to a Fourier coefficient greater
than 1.5.

Figure 7: Pattern of the non-zero Fourier coefficients with respect to the excitation frequency of
the individual components ac, as, bc, bs. Each point corresponds to a Fourier coefficient greater
than 0.5.



4. Conclusions

Analytical and numerical investigations have shown that the widely used linear model of the
damping pendulum is acceptable only to a very limited extent in parameters of pendulum char-
acteristics and excitation properties. Two degrees of freedom non-linear model either in spher-
ical or Cartesian coordinates must be introduced. The harmonic kinematic external excitation
in the suspension point was applied. Using the harmonic balance method, the resonance curves
of a planar stationary response as well as stability limits of the semi-trivial solution in both
response components were determined. These results are quantitatively acceptable in the non-
resonance interval only where a stationary response exists.

The detailed numerical analysis in the resonance domain was completed. Three types of
the resonance were identified with respect to the relation of a preliminary resonance curve and
stability limits: magnified in-plane response (in ξ coordinate), stationary spatial response (limit
cycle exists, amplitudes of oscillations in ξ and ζ directions are non-zero but constant) and
non-stationary spatial response (amplitudes in ξ and ζ directions are non-zero and variable). It
reveals, that the variability of the individual amplitudes of the non-stationary solution exhibits
periodic character with one base frequency ωF and several its super-harmonics. This frequency
ωF depends on all the parameters of the system (excitation frequency and amplitude, damping
etc.) However, for several small sub-intervals of the resonance region, the response behaviour
seems to be more complicated.

The general form of the solution in the resonance region was proposed, based on several
terms of the Fourier series. Detailed analytical study should follow.

From the practical point of view, it is highly recommended to design the damping pendulum
in such a way that any intersections of the resonance curve with the stability limits are avoided.
Especially the intersection with the ξ stability limit should be avoided otherwise a negative
influence of the pendulum in the resonance domain is to be expected in both along-wind as well
as in cross-wind directions. Taking into account that the excitation in the open air has rather a
broad band character, details of such a device should be thoroughly thought out.
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